Whittaker and Bessel functors for G 𝕊 p 4

Sergey Lysenko[1]

  • [1] Université Paris 6 Institut de mathématiques Analyse algébrique 175 rue du Chevaleret 75013 Paris (France)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 5, page 1505-1565
  • ISSN: 0373-0956

Abstract

top
The theory of Whittaker functors for G L n is an essential technical tools in Gaitsgory’s proof of the Vanishing Conjecture appearing in the geometric Langlands correspondence. We define Whittaker functors for G 𝕊 p 4 and study their properties. These functors correspond to the maximal parabolic subgroup of G 𝕊 p 4 , whose unipotent radical is not commutative.We also study similar functors corresponding to the Siegel parabolic subgroup of G 𝕊 p 4 , they are related with Bessel models for G 𝕊 p 4 and Waldspurger models for G L 2 .We define the Waldspurger category, which is a geometric counterpart of the Waldspurger module over the Hecke algebra of G L 2 . We prove a geometric version of the multiplicity one result for the Waldspurger models.

How to cite

top

Lysenko, Sergey. "Whittaker and Bessel functors for $G\mathbb{S}p_4$." Annales de l’institut Fourier 56.5 (2006): 1505-1565. <http://eudml.org/doc/10183>.

@article{Lysenko2006,
abstract = {The theory of Whittaker functors for $GL_n$ is an essential technical tools in Gaitsgory’s proof of the Vanishing Conjecture appearing in the geometric Langlands correspondence. We define Whittaker functors for $G\mathbb\{S\}p_4$ and study their properties. These functors correspond to the maximal parabolic subgroup of $G\mathbb\{S\}p_4$, whose unipotent radical is not commutative.We also study similar functors corresponding to the Siegel parabolic subgroup of $G\mathbb\{S\}p_4$, they are related with Bessel models for $G\mathbb\{S\}p_4$ and Waldspurger models for $GL_2$.We define the Waldspurger category, which is a geometric counterpart of the Waldspurger module over the Hecke algebra of $GL_2$. We prove a geometric version of the multiplicity one result for the Waldspurger models.},
affiliation = {Université Paris 6 Institut de mathématiques Analyse algébrique 175 rue du Chevaleret 75013 Paris (France)},
author = {Lysenko, Sergey},
journal = {Annales de l’institut Fourier},
keywords = {Geometric Langlands program; Waldspurger models; Whittaker functors; geometric Langlands program},
language = {eng},
number = {5},
pages = {1505-1565},
publisher = {Association des Annales de l’institut Fourier},
title = {Whittaker and Bessel functors for $G\mathbb\{S\}p_4$},
url = {http://eudml.org/doc/10183},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Lysenko, Sergey
TI - Whittaker and Bessel functors for $G\mathbb{S}p_4$
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 5
SP - 1505
EP - 1565
AB - The theory of Whittaker functors for $GL_n$ is an essential technical tools in Gaitsgory’s proof of the Vanishing Conjecture appearing in the geometric Langlands correspondence. We define Whittaker functors for $G\mathbb{S}p_4$ and study their properties. These functors correspond to the maximal parabolic subgroup of $G\mathbb{S}p_4$, whose unipotent radical is not commutative.We also study similar functors corresponding to the Siegel parabolic subgroup of $G\mathbb{S}p_4$, they are related with Bessel models for $G\mathbb{S}p_4$ and Waldspurger models for $GL_2$.We define the Waldspurger category, which is a geometric counterpart of the Waldspurger module over the Hecke algebra of $GL_2$. We prove a geometric version of the multiplicity one result for the Waldspurger models.
LA - eng
KW - Geometric Langlands program; Waldspurger models; Whittaker functors; geometric Langlands program
UR - http://eudml.org/doc/10183
ER -

References

top
  1. A. Beilinson, V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigen-sheaves Zbl0864.14007
  2. A. Braverman, D. Gaitsgory, Geometric Eisenstein series, Invent. Math. 150 (2002), 287-384 Zbl1046.11048MR1933587
  3. D. Bump, S. Friedberg, M. Furusawa, Explicit formulas for the Waldspurger and Bessel models, Israel J. Math. 102 (1997), 125-177 Zbl1073.11513MR1489103
  4. E. Frenkel, D. Gaitsgory, K. Vilonen, Whittaker patterns in the geometry of moduli spaces of bundles on curves, Ann. of Math. (2) 153 (2001), 699-748 Zbl1070.11050MR1836286
  5. D. Gaitsgory, On a vanishing conjecture appearing in the geometric Langlands correspondence, Ann. of Math. 160 (2004), 617-682 Zbl1129.11050MR2123934
  6. S. Lysenko, On automorphic sheaves on Bun G  
  7. S. Lysenko, Geometric Bessel models for G S p 4 and multiplicity one, IMRN (2005), 2657-2694 Zbl1088.22011
  8. I. Mirkovic, K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings Zbl1138.22013
  9. C. Mœglin, M.-F. Vignéras, J.-L. Waldspurger, Correspondances de Howe sur un corps p -adique, 1291 (1987), Springer-Verlag, Berlin Zbl0642.22002MR1041060
  10. I. I. Piatetski-Shapiro, On the Saito-Kurokawa lifting, Invent. Math. 71 (1983), 309-338 Zbl0515.10024MR689647
  11. S. Rallis, On the Howe duality conjecture, Compositio Math. 51 (1984), 333-399 Zbl0624.22011MR743016
  12. Jean-Louis Verdier, Des catégories dérivées des catégories abéliennes, (1996), Soc. Math. Fr. Zbl0882.18010MR1453167
  13. J.-L. Waldspurger, Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie, Compositio Math. 54 (1985), 173-242 Zbl0567.10021MR783511

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.