Whittaker and Bessel functors for
- [1] Université Paris 6 Institut de mathématiques Analyse algébrique 175 rue du Chevaleret 75013 Paris (France)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 5, page 1505-1565
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLysenko, Sergey. "Whittaker and Bessel functors for $G\mathbb{S}p_4$." Annales de l’institut Fourier 56.5 (2006): 1505-1565. <http://eudml.org/doc/10183>.
@article{Lysenko2006,
abstract = {The theory of Whittaker functors for $GL_n$ is an essential technical tools in Gaitsgory’s proof of the Vanishing Conjecture appearing in the geometric Langlands correspondence. We define Whittaker functors for $G\mathbb\{S\}p_4$ and study their properties. These functors correspond to the maximal parabolic subgroup of $G\mathbb\{S\}p_4$, whose unipotent radical is not commutative.We also study similar functors corresponding to the Siegel parabolic subgroup of $G\mathbb\{S\}p_4$, they are related with Bessel models for $G\mathbb\{S\}p_4$ and Waldspurger models for $GL_2$.We define the Waldspurger category, which is a geometric counterpart of the Waldspurger module over the Hecke algebra of $GL_2$. We prove a geometric version of the multiplicity one result for the Waldspurger models.},
affiliation = {Université Paris 6 Institut de mathématiques Analyse algébrique 175 rue du Chevaleret 75013 Paris (France)},
author = {Lysenko, Sergey},
journal = {Annales de l’institut Fourier},
keywords = {Geometric Langlands program; Waldspurger models; Whittaker functors; geometric Langlands program},
language = {eng},
number = {5},
pages = {1505-1565},
publisher = {Association des Annales de l’institut Fourier},
title = {Whittaker and Bessel functors for $G\mathbb\{S\}p_4$},
url = {http://eudml.org/doc/10183},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Lysenko, Sergey
TI - Whittaker and Bessel functors for $G\mathbb{S}p_4$
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 5
SP - 1505
EP - 1565
AB - The theory of Whittaker functors for $GL_n$ is an essential technical tools in Gaitsgory’s proof of the Vanishing Conjecture appearing in the geometric Langlands correspondence. We define Whittaker functors for $G\mathbb{S}p_4$ and study their properties. These functors correspond to the maximal parabolic subgroup of $G\mathbb{S}p_4$, whose unipotent radical is not commutative.We also study similar functors corresponding to the Siegel parabolic subgroup of $G\mathbb{S}p_4$, they are related with Bessel models for $G\mathbb{S}p_4$ and Waldspurger models for $GL_2$.We define the Waldspurger category, which is a geometric counterpart of the Waldspurger module over the Hecke algebra of $GL_2$. We prove a geometric version of the multiplicity one result for the Waldspurger models.
LA - eng
KW - Geometric Langlands program; Waldspurger models; Whittaker functors; geometric Langlands program
UR - http://eudml.org/doc/10183
ER -
References
top- A. Beilinson, V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigen-sheaves Zbl0864.14007
- A. Braverman, D. Gaitsgory, Geometric Eisenstein series, Invent. Math. 150 (2002), 287-384 Zbl1046.11048MR1933587
- D. Bump, S. Friedberg, M. Furusawa, Explicit formulas for the Waldspurger and Bessel models, Israel J. Math. 102 (1997), 125-177 Zbl1073.11513MR1489103
- E. Frenkel, D. Gaitsgory, K. Vilonen, Whittaker patterns in the geometry of moduli spaces of bundles on curves, Ann. of Math. (2) 153 (2001), 699-748 Zbl1070.11050MR1836286
- D. Gaitsgory, On a vanishing conjecture appearing in the geometric Langlands correspondence, Ann. of Math. 160 (2004), 617-682 Zbl1129.11050MR2123934
- S. Lysenko, On automorphic sheaves on
- S. Lysenko, Geometric Bessel models for and multiplicity one, IMRN (2005), 2657-2694 Zbl1088.22011
- I. Mirkovic, K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings Zbl1138.22013
- C. Mœglin, M.-F. Vignéras, J.-L. Waldspurger, Correspondances de Howe sur un corps -adique, 1291 (1987), Springer-Verlag, Berlin Zbl0642.22002MR1041060
- I. I. Piatetski-Shapiro, On the Saito-Kurokawa lifting, Invent. Math. 71 (1983), 309-338 Zbl0515.10024MR689647
- S. Rallis, On the Howe duality conjecture, Compositio Math. 51 (1984), 333-399 Zbl0624.22011MR743016
- Jean-Louis Verdier, Des catégories dérivées des catégories abéliennes, (1996), Soc. Math. Fr. Zbl0882.18010MR1453167
- J.-L. Waldspurger, Sur les valeurs de certaines fonctions automorphes en leur centre de symétrie, Compositio Math. 54 (1985), 173-242 Zbl0567.10021MR783511
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.