On Halphen’s Theorem and some generalizations

Alcides Lins Neto[1]

  • [1] Instituto de Matemática Pura e Aplicada Estrada Dona Castorina, 110 Horto, Rio de Janeiro (Brasil)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 6, page 1947-1982
  • ISSN: 0373-0956

Abstract

top
Let M n be a germ at 0 m of an irreducible analytic set of dimension n , where n 2 and 0 is a singular point of M . We study the question: when does there exist a germ of holomorphic map φ : ( n , 0 ) ( M , 0 ) such that φ - 1 ( 0 ) = { 0 } ? We prove essentialy three results. In Theorem 1 we consider the case where M is a quasi-homogeneous complete intersection of k polynomials F = ( F 1 , ... , F k ) , that is there exists a linear holomorphic vector field X on m , with eigenvalues λ 1 , ... , λ m + such that X ( F T ) = U · F T , where U is a k × k matrix with entries in 𝒪 m . We prove that if there exists a germ of holomorphic map φ as above and dim ( sing ( M ) ) n - 2 , then λ 1 + + λ m > Re ( tr ( U ) ( 0 ) ) . In Theorem 2 we answer the question completely when n = 2 , k = 1 and 0 is an isolated singularity of M . In Theorem 3 we prove that, if there exists a map as above, k = 1 and dim ( sing ( M ) ) n - 2 , then dim ( sing ( M ) ) = n - 2 . We observe that Theorems 1 and 2 are generalizations of some results due to Halphen.

How to cite

top

Lins Neto, Alcides. "On Halphen’s Theorem and some generalizations." Annales de l’institut Fourier 56.6 (2006): 1947-1982. <http://eudml.org/doc/10195>.

@article{LinsNeto2006,
abstract = {Let $M^n$ be a germ at $0\in \mathbb\{C\}^\{m\}$ of an irreducible analytic set of dimension $n$, where $n\ge 2$ and $0$ is a singular point of $M$. We study the question: when does there exist a germ of holomorphic map $\phi \colon (\mathbb\{C\}^n,0)\rightarrow (M,0)$ such that $\phi ^\{-1\}(0)=\lbrace 0\rbrace $ ? We prove essentialy three results. In Theorem 1 we consider the case where $M$ is a quasi-homogeneous complete intersection of $k$ polynomials $F=(F_1,\ldots ,F_k)$, that is there exists a linear holomorphic vector field $X$ on $\mathbb\{C\}^\{m\}$, with eigenvalues $\lambda _1,\ldots ,\lambda _\{m\}\in \mathbb\{Q\}_+$ such that $X(F^T)= U\cdotpF^T$, where $U$ is a $k\times k$ matrix with entries in $\mathcal\{O\}_\{m\}$. We prove that if there exists a germ of holomorphic map $\phi $ as above and $\dim _\{\mathbb\{C\}\}(\{\rm sing\} (M))\le n-2$, then $\lambda _1+\cdots +\lambda _\{m\}&gt; \{\rm Re\}(\{\rm tr\}(U)(0))$. In Theorem 2 we answer the question completely when $n=2$, $k=1$ and $0$ is an isolated singularity of $M$. In Theorem 3 we prove that, if there exists a map as above, $k=1$ and $\dim _\{\mathbb\{C\}\}(\{\rm sing\} (M))\le n-2$, then $\dim _\{\mathbb\{C\}\}(\{\rm sing\}(M))= n-2$. We observe that Theorems 1 and 2 are generalizations of some results due to Halphen.},
affiliation = {Instituto de Matemática Pura e Aplicada Estrada Dona Castorina, 110 Horto, Rio de Janeiro (Brasil)},
author = {Lins Neto, Alcides},
journal = {Annales de l’institut Fourier},
keywords = {Halphen’s theorem; quasi-homomogeneous; complete intersection; Halphen's theorem},
language = {eng},
number = {6},
pages = {1947-1982},
publisher = {Association des Annales de l’institut Fourier},
title = {On Halphen’s Theorem and some generalizations},
url = {http://eudml.org/doc/10195},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Lins Neto, Alcides
TI - On Halphen’s Theorem and some generalizations
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 6
SP - 1947
EP - 1982
AB - Let $M^n$ be a germ at $0\in \mathbb{C}^{m}$ of an irreducible analytic set of dimension $n$, where $n\ge 2$ and $0$ is a singular point of $M$. We study the question: when does there exist a germ of holomorphic map $\phi \colon (\mathbb{C}^n,0)\rightarrow (M,0)$ such that $\phi ^{-1}(0)=\lbrace 0\rbrace $ ? We prove essentialy three results. In Theorem 1 we consider the case where $M$ is a quasi-homogeneous complete intersection of $k$ polynomials $F=(F_1,\ldots ,F_k)$, that is there exists a linear holomorphic vector field $X$ on $\mathbb{C}^{m}$, with eigenvalues $\lambda _1,\ldots ,\lambda _{m}\in \mathbb{Q}_+$ such that $X(F^T)= U\cdotpF^T$, where $U$ is a $k\times k$ matrix with entries in $\mathcal{O}_{m}$. We prove that if there exists a germ of holomorphic map $\phi $ as above and $\dim _{\mathbb{C}}({\rm sing} (M))\le n-2$, then $\lambda _1+\cdots +\lambda _{m}&gt; {\rm Re}({\rm tr}(U)(0))$. In Theorem 2 we answer the question completely when $n=2$, $k=1$ and $0$ is an isolated singularity of $M$. In Theorem 3 we prove that, if there exists a map as above, $k=1$ and $\dim _{\mathbb{C}}({\rm sing} (M))\le n-2$, then $\dim _{\mathbb{C}}({\rm sing}(M))= n-2$. We observe that Theorems 1 and 2 are generalizations of some results due to Halphen.
LA - eng
KW - Halphen’s theorem; quasi-homomogeneous; complete intersection; Halphen's theorem
UR - http://eudml.org/doc/10195
ER -

References

top
  1. M.G. Soares A. Lins Neto, Algebraic solutions of onde-dimensional foliations, J. Diff. Geometry 43 (1996), 652-673 Zbl0873.32031MR1412680
  2. V. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, (1980), Éditions MIR Zbl0455.34001MR626685
  3. F. Baldassarri, B. Dwork, On second order linear differencial equations with algebraic solutions, American Journal of Math. 101 (1979), 42-76 Zbl0425.34007MR527825
  4. H. Cartan, Sur le premier problème de Cousin, C.R. Acad. Sc. 207 (1938), 558-560 Zbl0019.31503
  5. L. R. Ford, Automorphic Functions, (1951), 2 nd edition ; Chelsea Publ. Co., N.Y. 
  6. H. Grauert, R. Remmert, Theory of Stein Spaces, 236 (1979), Springer Verlag Zbl0433.32007MR580152
  7. Griffiths-Harris, Principles of Algebraic Geometry, (1994), John-Wiley and Sons Zbl0836.14001MR1288523
  8. R. C. Gunning, Introduction to holomorphic functions of several variables, (1990), Wadsworth & Brooks/Cole Publishing Comp Zbl0699.32001
  9. G. Halphen, Sur la Réduction des Équations Différentielles Linéaires aux Formes Intégrables, Mémoires présentés à l’Académie des Sciences XXVIII, 2 e série (1884) 
  10. G.-H. Halphen, Œuvres de G.-H. Halphen, tome III, (1921), Gauthier-Villars 
  11. F. Hirzebruch, Singularities and exotic spheres, Séminaire Bourbaki, année (1966/1967) Zbl0213.47701
  12. F. Klein, Lectures on the icosahedron and the solution of equations of the fifth degree, (1956), Dover Zbl0072.25901MR80930
  13. C. Pugh M. Hirsh, M. Shub, Invariant Manifolds, 583 (1977), Springer-Verlag Zbl0355.58009MR501173
  14. J. Milnor, Singular points of complex hypersurfaces, (1968), Princeton Univ. Press and the Univ. of Tokio Press Zbl0184.48405MR239612
  15. K. Saito, Quasihomogene isolierte Singularitäteten von Hyperflächen, Invent. Math. 14 (1971), 123-142 Zbl0224.32011MR294699
  16. H. A. Schwarz, Ueber diejenigem Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt, Journal f.d. reine und angew. Math. 75 (1890), 292-395 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.