On Halphen’s Theorem and some generalizations
- [1] Instituto de Matemática Pura e Aplicada Estrada Dona Castorina, 110 Horto, Rio de Janeiro (Brasil)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 6, page 1947-1982
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLins Neto, Alcides. "On Halphen’s Theorem and some generalizations." Annales de l’institut Fourier 56.6 (2006): 1947-1982. <http://eudml.org/doc/10195>.
@article{LinsNeto2006,
abstract = {Let $M^n$ be a germ at $0\in \mathbb\{C\}^\{m\}$ of an irreducible analytic set of dimension $n$, where $n\ge 2$ and $0$ is a singular point of $M$. We study the question: when does there exist a germ of holomorphic map $\phi \colon (\mathbb\{C\}^n,0)\rightarrow (M,0)$ such that $\phi ^\{-1\}(0)=\lbrace 0\rbrace $ ? We prove essentialy three results. In Theorem 1 we consider the case where $M$ is a quasi-homogeneous complete intersection of $k$ polynomials $F=(F_1,\ldots ,F_k)$, that is there exists a linear holomorphic vector field $X$ on $\mathbb\{C\}^\{m\}$, with eigenvalues $\lambda _1,\ldots ,\lambda _\{m\}\in \mathbb\{Q\}_+$ such that $X(F^T)= U\cdotpF^T$, where $U$ is a $k\times k$ matrix with entries in $\mathcal\{O\}_\{m\}$. We prove that if there exists a germ of holomorphic map $\phi $ as above and $\dim _\{\mathbb\{C\}\}(\{\rm sing\} (M))\le n-2$, then $\lambda _1+\cdots +\lambda _\{m\}> \{\rm Re\}(\{\rm tr\}(U)(0))$. In Theorem 2 we answer the question completely when $n=2$, $k=1$ and $0$ is an isolated singularity of $M$. In Theorem 3 we prove that, if there exists a map as above, $k=1$ and $\dim _\{\mathbb\{C\}\}(\{\rm sing\} (M))\le n-2$, then $\dim _\{\mathbb\{C\}\}(\{\rm sing\}(M))= n-2$. We observe that Theorems 1 and 2 are generalizations of some results due to Halphen.},
affiliation = {Instituto de Matemática Pura e Aplicada Estrada Dona Castorina, 110 Horto, Rio de Janeiro (Brasil)},
author = {Lins Neto, Alcides},
journal = {Annales de l’institut Fourier},
keywords = {Halphen’s theorem; quasi-homomogeneous; complete intersection; Halphen's theorem},
language = {eng},
number = {6},
pages = {1947-1982},
publisher = {Association des Annales de l’institut Fourier},
title = {On Halphen’s Theorem and some generalizations},
url = {http://eudml.org/doc/10195},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Lins Neto, Alcides
TI - On Halphen’s Theorem and some generalizations
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 6
SP - 1947
EP - 1982
AB - Let $M^n$ be a germ at $0\in \mathbb{C}^{m}$ of an irreducible analytic set of dimension $n$, where $n\ge 2$ and $0$ is a singular point of $M$. We study the question: when does there exist a germ of holomorphic map $\phi \colon (\mathbb{C}^n,0)\rightarrow (M,0)$ such that $\phi ^{-1}(0)=\lbrace 0\rbrace $ ? We prove essentialy three results. In Theorem 1 we consider the case where $M$ is a quasi-homogeneous complete intersection of $k$ polynomials $F=(F_1,\ldots ,F_k)$, that is there exists a linear holomorphic vector field $X$ on $\mathbb{C}^{m}$, with eigenvalues $\lambda _1,\ldots ,\lambda _{m}\in \mathbb{Q}_+$ such that $X(F^T)= U\cdotpF^T$, where $U$ is a $k\times k$ matrix with entries in $\mathcal{O}_{m}$. We prove that if there exists a germ of holomorphic map $\phi $ as above and $\dim _{\mathbb{C}}({\rm sing} (M))\le n-2$, then $\lambda _1+\cdots +\lambda _{m}> {\rm Re}({\rm tr}(U)(0))$. In Theorem 2 we answer the question completely when $n=2$, $k=1$ and $0$ is an isolated singularity of $M$. In Theorem 3 we prove that, if there exists a map as above, $k=1$ and $\dim _{\mathbb{C}}({\rm sing} (M))\le n-2$, then $\dim _{\mathbb{C}}({\rm sing}(M))= n-2$. We observe that Theorems 1 and 2 are generalizations of some results due to Halphen.
LA - eng
KW - Halphen’s theorem; quasi-homomogeneous; complete intersection; Halphen's theorem
UR - http://eudml.org/doc/10195
ER -
References
top- M.G. Soares A. Lins Neto, Algebraic solutions of onde-dimensional foliations, J. Diff. Geometry 43 (1996), 652-673 Zbl0873.32031MR1412680
- V. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, (1980), Éditions MIR Zbl0455.34001MR626685
- F. Baldassarri, B. Dwork, On second order linear differencial equations with algebraic solutions, American Journal of Math. 101 (1979), 42-76 Zbl0425.34007MR527825
- H. Cartan, Sur le premier problème de Cousin, C.R. Acad. Sc. 207 (1938), 558-560 Zbl0019.31503
- L. R. Ford, Automorphic Functions, (1951), 2 nd edition ; Chelsea Publ. Co., N.Y.
- H. Grauert, R. Remmert, Theory of Stein Spaces, 236 (1979), Springer Verlag Zbl0433.32007MR580152
- Griffiths-Harris, Principles of Algebraic Geometry, (1994), John-Wiley and Sons Zbl0836.14001MR1288523
- R. C. Gunning, Introduction to holomorphic functions of several variables, (1990), Wadsworth & Brooks/Cole Publishing Comp Zbl0699.32001
- G. Halphen, Sur la Réduction des Équations Différentielles Linéaires aux Formes Intégrables, Mémoires présentés à l’Académie des Sciences XXVIII, 2 e série (1884)
- G.-H. Halphen, Œuvres de G.-H. Halphen, tome III, (1921), Gauthier-Villars
- F. Hirzebruch, Singularities and exotic spheres, Séminaire Bourbaki, année (1966/1967) Zbl0213.47701
- F. Klein, Lectures on the icosahedron and the solution of equations of the fifth degree, (1956), Dover Zbl0072.25901MR80930
- C. Pugh M. Hirsh, M. Shub, Invariant Manifolds, 583 (1977), Springer-Verlag Zbl0355.58009MR501173
- J. Milnor, Singular points of complex hypersurfaces, (1968), Princeton Univ. Press and the Univ. of Tokio Press Zbl0184.48405MR239612
- K. Saito, Quasihomogene isolierte Singularitäteten von Hyperflächen, Invent. Math. 14 (1971), 123-142 Zbl0224.32011MR294699
- H. A. Schwarz, Ueber diejenigem Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt, Journal f.d. reine und angew. Math. 75 (1890), 292-395
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.