# Substitutions with Cofinal Fixed Points

Bo TAN[1]; Zhi-Xiong WEN[1]; Jun WU[1]; Zhi-Ying WEN[2]

• [1] Huazhong University of Science and Technology Department of Mathematics Wuhan, 430074 (P.R. China)
• [2] Tsinghua University Department of Mathematics Beijing, 100084 (P.R. China)
• Volume: 56, Issue: 7, page 2551-2563
• ISSN: 0373-0956

top

## Abstract

top
Let $\varphi$ be a substitution over a 2-letter alphabet, say $\left\{a,b\right\}$. If $\varphi \left(a\right)$ and $\varphi \left(b\right)$ begin with $a$ and $b$ respectively, $\varphi$ has two fixed points beginning with $a$ and $b$ respectively.We characterize substitutions with two cofinal fixed points (i.e., which differ only by prefixes). The proof is a combinatorial one, based on the study of repetitions of words in the fixed points.

## How to cite

top

TAN, Bo, et al. "Substitutions with Cofinal Fixed Points." Annales de l’institut Fourier 56.7 (2006): 2551-2563. <http://eudml.org/doc/10213>.

@article{TAN2006,
abstract = {Let $\varphi$ be a substitution over a 2-letter alphabet, say $\lbrace a, b\rbrace$. If $\varphi (a)$ and $\varphi (b)$ begin with $a$ and $b$ respectively, $\varphi$ has two fixed points beginning with $a$ and $b$ respectively.We characterize substitutions with two cofinal fixed points (i.e., which differ only by prefixes). The proof is a combinatorial one, based on the study of repetitions of words in the fixed points.},
affiliation = {Huazhong University of Science and Technology Department of Mathematics Wuhan, 430074 (P.R. China); Huazhong University of Science and Technology Department of Mathematics Wuhan, 430074 (P.R. China); Huazhong University of Science and Technology Department of Mathematics Wuhan, 430074 (P.R. China); Tsinghua University Department of Mathematics Beijing, 100084 (P.R. China)},
author = {TAN, Bo, WEN, Zhi-Xiong, WU, Jun, WEN, Zhi-Ying},
journal = {Annales de l’institut Fourier},
keywords = {Cofinal sequences; substitution; cofinal sequences},
language = {eng},
number = {7},
pages = {2551-2563},
publisher = {Association des Annales de l’institut Fourier},
title = {Substitutions with Cofinal Fixed Points},
url = {http://eudml.org/doc/10213},
volume = {56},
year = {2006},
}

TY - JOUR
AU - TAN, Bo
AU - WEN, Zhi-Xiong
AU - WU, Jun
AU - WEN, Zhi-Ying
TI - Substitutions with Cofinal Fixed Points
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 7
SP - 2551
EP - 2563
AB - Let $\varphi$ be a substitution over a 2-letter alphabet, say $\lbrace a, b\rbrace$. If $\varphi (a)$ and $\varphi (b)$ begin with $a$ and $b$ respectively, $\varphi$ has two fixed points beginning with $a$ and $b$ respectively.We characterize substitutions with two cofinal fixed points (i.e., which differ only by prefixes). The proof is a combinatorial one, based on the study of repetitions of words in the fixed points.
LA - eng
KW - Cofinal sequences; substitution; cofinal sequences
UR - http://eudml.org/doc/10213
ER -

## References

top
1. J.P. Allouche, J.O. Shallit, Automatic sequences: Theory and Applications, (2002), Cambridge University Press, Cambrige Zbl1086.11015
2. P. Arnoux, G. Rauzy, Représentation géométrique de suites de complexité $2n+1$, Bull. Soc. Math. 119 (1991), 199-215 Zbl0789.28011MR1116845
3. P. Arnoux, S Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), 181-207 Zbl1007.37001MR1838930
4. H. Ei, S. Ito, Decomposition theorem on invertible substitutions, Osaka J. Math. 35 (1998), 821-834 Zbl0924.20040MR1659624
5. M. Lothaire, Combinatorics on words, (1997), Cambridge University Press, Cambridge Zbl0874.20040MR1475463
6. M. Lothaire, Algebraic combinatorics on words, (2002), Cambridge University Press, Cambridge Zbl1001.68093MR1905123
7. M. Lothaire, Applied combinatorics on words, (2005), Cambridge University Press, Cambridge Zbl1133.68067MR2165687
8. J. Nielsen, Die Isomorphismengruppen der freien Gruppen, Math. Ann 91 (1924), 169-209 Zbl50.0078.04MR1512188
9. N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, 1794 (2002), Springer, Berlin Zbl1014.11015MR1970385
10. P. Séébold, An effective solution to the D0L periodicity problem in the binary case, EATCS Bull. 36 (1988), 137-151 Zbl0678.68072
11. B. Tan, Z.-X. Wen, Y. P. Zhang, The structure of invertible substitutions on a three-letter alphabet, Adv. in Appl. Math. 32 (2004), 736-753 Zbl1082.68092MR2053843
12. Z.-X. Wen, Z.-Y. Wen, Local isomorphism of the invertible substitutions, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), 299-304 Zbl0812.11018MR1267604
13. Z.-X. Wen, Z.-Y. Wen, J. Wu, On invertible substitutions with two fixed points, C. R. Math. Acad. Sci. Paris 334 (2002), 727-731 Zbl0996.68149MR1905029
14. Z.-X. Wen, Y. P. Zhang, Some remarks on invertible substitutions on three letter alphabet, Chinese Sci. Bull. 44 (1999), 1755-1760 Zbl1040.20504MR1737516

## NotesEmbed?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.