Substitutions with Cofinal Fixed Points
Bo TAN[1]; Zhi-Xiong WEN[1]; Jun WU[1]; Zhi-Ying WEN[2]
- [1] Huazhong University of Science and Technology Department of Mathematics Wuhan, 430074 (P.R. China)
- [2] Tsinghua University Department of Mathematics Beijing, 100084 (P.R. China)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 7, page 2551-2563
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topTAN, Bo, et al. "Substitutions with Cofinal Fixed Points." Annales de l’institut Fourier 56.7 (2006): 2551-2563. <http://eudml.org/doc/10213>.
@article{TAN2006,
abstract = {Let $\varphi $ be a substitution over a 2-letter alphabet, say $\lbrace a, b\rbrace $. If $\varphi (a)$ and $\varphi (b)$ begin with $a$ and $b$ respectively, $\varphi $ has two fixed points beginning with $a$ and $b$ respectively.We characterize substitutions with two cofinal fixed points (i.e., which differ only by prefixes). The proof is a combinatorial one, based on the study of repetitions of words in the fixed points.},
affiliation = {Huazhong University of Science and Technology Department of Mathematics Wuhan, 430074 (P.R. China); Huazhong University of Science and Technology Department of Mathematics Wuhan, 430074 (P.R. China); Huazhong University of Science and Technology Department of Mathematics Wuhan, 430074 (P.R. China); Tsinghua University Department of Mathematics Beijing, 100084 (P.R. China)},
author = {TAN, Bo, WEN, Zhi-Xiong, WU, Jun, WEN, Zhi-Ying},
journal = {Annales de l’institut Fourier},
keywords = {Cofinal sequences; substitution; cofinal sequences},
language = {eng},
number = {7},
pages = {2551-2563},
publisher = {Association des Annales de l’institut Fourier},
title = {Substitutions with Cofinal Fixed Points},
url = {http://eudml.org/doc/10213},
volume = {56},
year = {2006},
}
TY - JOUR
AU - TAN, Bo
AU - WEN, Zhi-Xiong
AU - WU, Jun
AU - WEN, Zhi-Ying
TI - Substitutions with Cofinal Fixed Points
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 7
SP - 2551
EP - 2563
AB - Let $\varphi $ be a substitution over a 2-letter alphabet, say $\lbrace a, b\rbrace $. If $\varphi (a)$ and $\varphi (b)$ begin with $a$ and $b$ respectively, $\varphi $ has two fixed points beginning with $a$ and $b$ respectively.We characterize substitutions with two cofinal fixed points (i.e., which differ only by prefixes). The proof is a combinatorial one, based on the study of repetitions of words in the fixed points.
LA - eng
KW - Cofinal sequences; substitution; cofinal sequences
UR - http://eudml.org/doc/10213
ER -
References
top- J.P. Allouche, J.O. Shallit, Automatic sequences: Theory and Applications, (2002), Cambridge University Press, Cambrige Zbl1086.11015
- P. Arnoux, G. Rauzy, Représentation géométrique de suites de complexité , Bull. Soc. Math. 119 (1991), 199-215 Zbl0789.28011MR1116845
- P. Arnoux, S Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), 181-207 Zbl1007.37001MR1838930
- H. Ei, S. Ito, Decomposition theorem on invertible substitutions, Osaka J. Math. 35 (1998), 821-834 Zbl0924.20040MR1659624
- M. Lothaire, Combinatorics on words, (1997), Cambridge University Press, Cambridge Zbl0874.20040MR1475463
- M. Lothaire, Algebraic combinatorics on words, (2002), Cambridge University Press, Cambridge Zbl1001.68093MR1905123
- M. Lothaire, Applied combinatorics on words, (2005), Cambridge University Press, Cambridge Zbl1133.68067MR2165687
- J. Nielsen, Die Isomorphismengruppen der freien Gruppen, Math. Ann 91 (1924), 169-209 Zbl50.0078.04MR1512188
- N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, 1794 (2002), Springer, Berlin Zbl1014.11015MR1970385
- P. Séébold, An effective solution to the D0L periodicity problem in the binary case, EATCS Bull. 36 (1988), 137-151 Zbl0678.68072
- B. Tan, Z.-X. Wen, Y. P. Zhang, The structure of invertible substitutions on a three-letter alphabet, Adv. in Appl. Math. 32 (2004), 736-753 Zbl1082.68092MR2053843
- Z.-X. Wen, Z.-Y. Wen, Local isomorphism of the invertible substitutions, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), 299-304 Zbl0812.11018MR1267604
- Z.-X. Wen, Z.-Y. Wen, J. Wu, On invertible substitutions with two fixed points, C. R. Math. Acad. Sci. Paris 334 (2002), 727-731 Zbl0996.68149MR1905029
- Z.-X. Wen, Y. P. Zhang, Some remarks on invertible substitutions on three letter alphabet, Chinese Sci. Bull. 44 (1999), 1755-1760 Zbl1040.20504MR1737516
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.