Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms
Viviane Baladi[1]; Masato Tsujii[2]
- [1] CNRS-UMR 7586 Institut de Mathématiques Jussieu 75252 Paris Cedex 05 (France)
- [2] Hokkaido University Department of Mathematics Sapporo, Hokkaido (Japan)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 1, page 127-154
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBaladi, Viviane, and Tsujii, Masato. "Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms." Annales de l’institut Fourier 57.1 (2007): 127-154. <http://eudml.org/doc/10215>.
@article{Baladi2007,
abstract = {We study spectral properties of transfer operators for diffeomorphisms $T:X\rightarrow X$ on a Riemannian manifold $X$. Suppose that $\Omega $ is an isolated hyperbolic subset for $T$, with a compact isolating neighborhood $V\subset X$. We first introduce Banach spaces of distributions supported on $V$, which are anisotropic versions of the usual space of $C^p$ functions $C^p(V)$ and of the generalized Sobolev spaces $W^\{p,t\}(V)$, respectively. We then show that the transfer operators associated to $T$ and a smooth weight $g$ extend boundedly to these spaces, and we give bounds on the essential spectral radii of such extensions in terms of hyperbolicity exponents.},
affiliation = {CNRS-UMR 7586 Institut de Mathématiques Jussieu 75252 Paris Cedex 05 (France); Hokkaido University Department of Mathematics Sapporo, Hokkaido (Japan)},
author = {Baladi, Viviane, Tsujii, Masato},
journal = {Annales de l’institut Fourier},
keywords = {Hyperbolic dynamics; transfer operator; Ruelle operator; spectrum; axiom A; Anosov; Perron-Frobenius; quasi-compact; hyperbolic dynamics; Axiom A},
language = {eng},
number = {1},
pages = {127-154},
publisher = {Association des Annales de l’institut Fourier},
title = {Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms},
url = {http://eudml.org/doc/10215},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Baladi, Viviane
AU - Tsujii, Masato
TI - Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 1
SP - 127
EP - 154
AB - We study spectral properties of transfer operators for diffeomorphisms $T:X\rightarrow X$ on a Riemannian manifold $X$. Suppose that $\Omega $ is an isolated hyperbolic subset for $T$, with a compact isolating neighborhood $V\subset X$. We first introduce Banach spaces of distributions supported on $V$, which are anisotropic versions of the usual space of $C^p$ functions $C^p(V)$ and of the generalized Sobolev spaces $W^{p,t}(V)$, respectively. We then show that the transfer operators associated to $T$ and a smooth weight $g$ extend boundedly to these spaces, and we give bounds on the essential spectral radii of such extensions in terms of hyperbolicity exponents.
LA - eng
KW - Hyperbolic dynamics; transfer operator; Ruelle operator; spectrum; axiom A; Anosov; Perron-Frobenius; quasi-compact; hyperbolic dynamics; Axiom A
UR - http://eudml.org/doc/10215
ER -
References
top- A. Avila, S. Gouëzel, M. Tsujii, Smoothness of solenoidal attractors, Discrete Cont. Dynam. Systems 15 (2006), 21-35 Zbl1106.37015MR2191383
- V. Baladi, Positive transfer operators and decay of correlations, Advanced Series in Nonlinear Dynamics 16 (2000), World Scientific Zbl1012.37015MR1793194
- V. Baladi, Anisotropic Sobolev spaces and dynamical transfer operators: foliations, S.Kolyada, Y.Manin and T.Ward, Eds., Algebraic and Topological Dynamics, Contemporary Mathematics (2005), 123-136, Amer. Math. Soc. Zbl1158.37304MR2180233
- M. Blank, G. Keller, C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity 15 (2002), 1905-1973 Zbl1021.37015MR1938476
- D. Fried, The flat-trace asymptotics of a uniform system of contractions, Ergodic Theory Dynam. Sys. 15 (1995), 1061-1073 Zbl0841.58052MR1366308
- D. Fried, Meromorphic zeta functions for analytic flows, Comm. Math. Phys. 174 (1995), 161-190 Zbl0841.58053MR1372805
- S. Gouëzel, C. Liverani, Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Sys. 26 (2006), 189-218 Zbl1088.37010MR2201945
- V. M. Gundlach, Y. Latushkin, A sharp formula for the essential spectral radius of the Ruelle transfer operator on smooth and Hölder spaces, Ergodic Theory Dynam. Sys. 23 (2003), 175-191 Zbl1140.37307MR1971201
- H. Hennion, Sur un théorème spectral et son application aux noyaux lipschitziens, Proc. Amer. Math. Soc. 118 (1993), 627-634 Zbl0772.60049MR1129880
- L. Hörmander, The analysis of linear partial differential operators. III. Pseudo-differential operators, Grundlehren der Mathematischen Wissenschaften 274 (1994), Springer-Verlag, Berlin Zbl0601.35001MR1313500
- A. Yu. Kitaev, Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness, Nonlinearity 12 (1999), 141-179 Zbl0917.58029MR1668543
- J. E. Paley, R. Littlewood, Theorems on Fourier series and power series, Proc. London Math. Soc. 42 (1937), 52-89 Zbl0015.25402
- D. Ruelle, The thermodynamic formalism for expanding maps, Comm. Math. Phys. 125 (1989), 239-262 Zbl0702.58056MR1016871
- H. H. Rugh, The correlation spectrum for hyperbolic analytic maps, Nonlinearity 5 (1992), 1237-1263 Zbl0768.58027MR1192517
- M. E. Taylor, Pseudo differential operators, Lecture Notes in Math. 416 (1974), Springer-Verlag, Berlin-New York Zbl0289.35001MR442523
- M. E. Taylor, Pseudodifferential operators and nonlinear PDE, Progress in Math. 100 (1991), Birkhäuser, Boston Zbl0746.35062MR1121019
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.