Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms

Viviane Baladi[1]; Masato Tsujii[2]

  • [1] CNRS-UMR 7586 Institut de Mathématiques Jussieu 75252 Paris Cedex 05 (France)
  • [2] Hokkaido University Department of Mathematics Sapporo, Hokkaido (Japan)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 1, page 127-154
  • ISSN: 0373-0956

Abstract

top
We study spectral properties of transfer operators for diffeomorphisms T : X X on a Riemannian manifold X . Suppose that Ω is an isolated hyperbolic subset for T , with a compact isolating neighborhood V X . We first introduce Banach spaces of distributions supported on V , which are anisotropic versions of the usual space of C p functions C p ( V ) and of the generalized Sobolev spaces W p , t ( V ) , respectively. We then show that the transfer operators associated to  T and a smooth weight g extend boundedly to these spaces, and we give bounds on the essential spectral radii of such extensions in terms of hyperbolicity exponents.

How to cite

top

Baladi, Viviane, and Tsujii, Masato. "Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms." Annales de l’institut Fourier 57.1 (2007): 127-154. <http://eudml.org/doc/10215>.

@article{Baladi2007,
abstract = {We study spectral properties of transfer operators for diffeomorphisms $T:X\rightarrow X$ on a Riemannian manifold $X$. Suppose that $\Omega $ is an isolated hyperbolic subset for $T$, with a compact isolating neighborhood $V\subset X$. We first introduce Banach spaces of distributions supported on $V$, which are anisotropic versions of the usual space of $C^p$ functions $C^p(V)$ and of the generalized Sobolev spaces $W^\{p,t\}(V)$, respectively. We then show that the transfer operators associated to $T$ and a smooth weight $g$ extend boundedly to these spaces, and we give bounds on the essential spectral radii of such extensions in terms of hyperbolicity exponents.},
affiliation = {CNRS-UMR 7586 Institut de Mathématiques Jussieu 75252 Paris Cedex 05 (France); Hokkaido University Department of Mathematics Sapporo, Hokkaido (Japan)},
author = {Baladi, Viviane, Tsujii, Masato},
journal = {Annales de l’institut Fourier},
keywords = {Hyperbolic dynamics; transfer operator; Ruelle operator; spectrum; axiom A; Anosov; Perron-Frobenius; quasi-compact; hyperbolic dynamics; Axiom A},
language = {eng},
number = {1},
pages = {127-154},
publisher = {Association des Annales de l’institut Fourier},
title = {Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms},
url = {http://eudml.org/doc/10215},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Baladi, Viviane
AU - Tsujii, Masato
TI - Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 1
SP - 127
EP - 154
AB - We study spectral properties of transfer operators for diffeomorphisms $T:X\rightarrow X$ on a Riemannian manifold $X$. Suppose that $\Omega $ is an isolated hyperbolic subset for $T$, with a compact isolating neighborhood $V\subset X$. We first introduce Banach spaces of distributions supported on $V$, which are anisotropic versions of the usual space of $C^p$ functions $C^p(V)$ and of the generalized Sobolev spaces $W^{p,t}(V)$, respectively. We then show that the transfer operators associated to $T$ and a smooth weight $g$ extend boundedly to these spaces, and we give bounds on the essential spectral radii of such extensions in terms of hyperbolicity exponents.
LA - eng
KW - Hyperbolic dynamics; transfer operator; Ruelle operator; spectrum; axiom A; Anosov; Perron-Frobenius; quasi-compact; hyperbolic dynamics; Axiom A
UR - http://eudml.org/doc/10215
ER -

References

top
  1. A. Avila, S. Gouëzel, M. Tsujii, Smoothness of solenoidal attractors, Discrete Cont. Dynam. Systems 15 (2006), 21-35 Zbl1106.37015MR2191383
  2. V. Baladi, Positive transfer operators and decay of correlations, Advanced Series in Nonlinear Dynamics 16 (2000), World Scientific Zbl1012.37015MR1793194
  3. V. Baladi, Anisotropic Sobolev spaces and dynamical transfer operators: C foliations, S.Kolyada, Y.Manin and T.Ward, Eds., Algebraic and Topological Dynamics, Contemporary Mathematics (2005), 123-136, Amer. Math. Soc. Zbl1158.37304MR2180233
  4. M. Blank, G. Keller, C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity 15 (2002), 1905-1973 Zbl1021.37015MR1938476
  5. D. Fried, The flat-trace asymptotics of a uniform system of contractions, Ergodic Theory Dynam. Sys. 15 (1995), 1061-1073 Zbl0841.58052MR1366308
  6. D. Fried, Meromorphic zeta functions for analytic flows, Comm. Math. Phys. 174 (1995), 161-190 Zbl0841.58053MR1372805
  7. S. Gouëzel, C. Liverani, Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Sys. 26 (2006), 189-218 Zbl1088.37010MR2201945
  8. V. M. Gundlach, Y. Latushkin, A sharp formula for the essential spectral radius of the Ruelle transfer operator on smooth and Hölder spaces, Ergodic Theory Dynam. Sys. 23 (2003), 175-191 Zbl1140.37307MR1971201
  9. H. Hennion, Sur un théorème spectral et son application aux noyaux lipschitziens, Proc. Amer. Math. Soc. 118 (1993), 627-634 Zbl0772.60049MR1129880
  10. L. Hörmander, The analysis of linear partial differential operators. III. Pseudo-differential operators, Grundlehren der Mathematischen Wissenschaften 274 (1994), Springer-Verlag, Berlin Zbl0601.35001MR1313500
  11. A. Yu. Kitaev, Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness, Nonlinearity 12 (1999), 141-179 Zbl0917.58029MR1668543
  12. J. E. Paley, R. Littlewood, Theorems on Fourier series and power series, Proc. London Math. Soc. 42 (1937), 52-89 Zbl0015.25402
  13. D. Ruelle, The thermodynamic formalism for expanding maps, Comm. Math. Phys. 125 (1989), 239-262 Zbl0702.58056MR1016871
  14. H. H. Rugh, The correlation spectrum for hyperbolic analytic maps, Nonlinearity 5 (1992), 1237-1263 Zbl0768.58027MR1192517
  15. M. E. Taylor, Pseudo differential operators, Lecture Notes in Math. 416 (1974), Springer-Verlag, Berlin-New York Zbl0289.35001MR442523
  16. M. E. Taylor, Pseudodifferential operators and nonlinear PDE, Progress in Math. 100 (1991), Birkhäuser, Boston Zbl0746.35062MR1121019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.