Complete real Kähler Euclidean hypersurfaces are cylinders
Luis A. Florit[1]; Fangyang Zheng[2]
- [1] IMPA: Estrada Dona Castorina 110 22460–320, Rio de Janeiro (Brazil)
- [2] Ohio State University Columbus, OH 43210 (USA) and Zhejiang University IMS Hanzhou (China)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 1, page 155-161
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFlorit, Luis A., and Zheng, Fangyang. "Complete real Kähler Euclidean hypersurfaces are cylinders." Annales de l’institut Fourier 57.1 (2007): 155-161. <http://eudml.org/doc/10216>.
@article{Florit2007,
abstract = {In this note we show that any complete Kähler (immersed) Euclidean hypersurface $M^\{2n\}\subset \mathbb\{R\}^\{2n+1\}$ must be the product of a surface in $\mathbb\{R\}^3$ with an Euclidean factor $\mathbb\{C\}^\{n-1\}\cong \mathbb\{R\}^\{2n-2\}$.},
affiliation = {IMPA: Estrada Dona Castorina 110 22460–320, Rio de Janeiro (Brazil); Ohio State University Columbus, OH 43210 (USA) and Zhejiang University IMS Hanzhou (China)},
author = {Florit, Luis A., Zheng, Fangyang},
journal = {Annales de l’institut Fourier},
keywords = {Kähler submanifolds; cylinders; splitting},
language = {eng},
number = {1},
pages = {155-161},
publisher = {Association des Annales de l’institut Fourier},
title = {Complete real Kähler Euclidean hypersurfaces are cylinders},
url = {http://eudml.org/doc/10216},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Florit, Luis A.
AU - Zheng, Fangyang
TI - Complete real Kähler Euclidean hypersurfaces are cylinders
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 1
SP - 155
EP - 161
AB - In this note we show that any complete Kähler (immersed) Euclidean hypersurface $M^{2n}\subset \mathbb{R}^{2n+1}$ must be the product of a surface in $\mathbb{R}^3$ with an Euclidean factor $\mathbb{C}^{n-1}\cong \mathbb{R}^{2n-2}$.
LA - eng
KW - Kähler submanifolds; cylinders; splitting
UR - http://eudml.org/doc/10216
ER -
References
top- K. Abe, A complex analogue of Hartman-Nirenberg cylinder theorem, J. Differential Geom. 7 (1972), 453-460 Zbl0272.53040MR383307
- K. Abe, On a class of hypersurfaces of , Duke Math. J. 41 (1974), 865-874 Zbl0304.53044MR350661
- M. Dajczer, D. Gromoll, Real Kähler submanifolds and uniqueness of the Gauss map, J. Differential Geom. 22 (1985), 13-28 Zbl0587.53051MR826421
- M. Dajczer, D. Gromoll, Rigidity of complete Euclidean hypersurfaces, J. Differential Geom. 31 (1990), 401-416 Zbl0667.53003MR1037409
- M. Dajczer, L. Rodríguez, Complete real Kähler minimal submanifolds, J. Reine Angew. Math. 419 (1991), 1-8 Zbl0726.53041MR1116914
- L. Florit, W. Hui, F. Zheng, On real Kähler Euclidean submanifolds with non-negative Ricci curvature, J. Eur. Math. Soc. 7 (2005), 1-11 Zbl1090.53010MR2120988
- L. Florit, F. Zheng, Complete real Kähler Euclidean submanifolds in codimension two Zbl1133.53044
- L. Florit, F. Zheng, A local and global splitting result for real Kähler Euclidean submanifolds, Arch. Math. (Basel) 84 (2005), 88-95 Zbl1086.53030MR2106408
- P. Hartman, On isometric immersions in Euclidean space of manifolds with non–negative sectional curvatures II, Trans. Amer. Math. Soc. 147 (1970), 529-540 Zbl0194.22702
- P. Hartman, L. Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math. 81 (1959), 901-920 Zbl0094.16303MR126812
- P. Ryan, Kähler manifolds as real hypersurfaces, Duke Math. J. 40 (1973), 207-213 Zbl0257.53055MR336666
- T. Takahashi, A note on Kählerian hypersurfaces of spaces of constant curvature, Kumamoto J. Sci. (Math.) 9 (1972), 21-24 Zbl0236.53031
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.