Complete real Kähler Euclidean hypersurfaces are cylinders

Luis A. Florit[1]; Fangyang Zheng[2]

  • [1] IMPA: Estrada Dona Castorina 110 22460–320, Rio de Janeiro (Brazil)
  • [2] Ohio State University Columbus, OH 43210 (USA) and Zhejiang University IMS Hanzhou (China)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 1, page 155-161
  • ISSN: 0373-0956

Abstract

top
In this note we show that any complete Kähler (immersed) Euclidean hypersurface M 2 n 2 n + 1 must be the product of a surface in 3 with an Euclidean factor n - 1 2 n - 2 .

How to cite

top

Florit, Luis A., and Zheng, Fangyang. "Complete real Kähler Euclidean hypersurfaces are cylinders." Annales de l’institut Fourier 57.1 (2007): 155-161. <http://eudml.org/doc/10216>.

@article{Florit2007,
abstract = {In this note we show that any complete Kähler (immersed) Euclidean hypersurface $M^\{2n\}\subset \mathbb\{R\}^\{2n+1\}$ must be the product of a surface in $\mathbb\{R\}^3$ with an Euclidean factor $\mathbb\{C\}^\{n-1\}\cong \mathbb\{R\}^\{2n-2\}$.},
affiliation = {IMPA: Estrada Dona Castorina 110 22460–320, Rio de Janeiro (Brazil); Ohio State University Columbus, OH 43210 (USA) and Zhejiang University IMS Hanzhou (China)},
author = {Florit, Luis A., Zheng, Fangyang},
journal = {Annales de l’institut Fourier},
keywords = {Kähler submanifolds; cylinders; splitting},
language = {eng},
number = {1},
pages = {155-161},
publisher = {Association des Annales de l’institut Fourier},
title = {Complete real Kähler Euclidean hypersurfaces are cylinders},
url = {http://eudml.org/doc/10216},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Florit, Luis A.
AU - Zheng, Fangyang
TI - Complete real Kähler Euclidean hypersurfaces are cylinders
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 1
SP - 155
EP - 161
AB - In this note we show that any complete Kähler (immersed) Euclidean hypersurface $M^{2n}\subset \mathbb{R}^{2n+1}$ must be the product of a surface in $\mathbb{R}^3$ with an Euclidean factor $\mathbb{C}^{n-1}\cong \mathbb{R}^{2n-2}$.
LA - eng
KW - Kähler submanifolds; cylinders; splitting
UR - http://eudml.org/doc/10216
ER -

References

top
  1. K. Abe, A complex analogue of Hartman-Nirenberg cylinder theorem, J. Differential Geom. 7 (1972), 453-460 Zbl0272.53040MR383307
  2. K. Abe, On a class of hypersurfaces of 2 n + 1 , Duke Math. J. 41 (1974), 865-874 Zbl0304.53044MR350661
  3. M. Dajczer, D. Gromoll, Real Kähler submanifolds and uniqueness of the Gauss map, J. Differential Geom. 22 (1985), 13-28 Zbl0587.53051MR826421
  4. M. Dajczer, D. Gromoll, Rigidity of complete Euclidean hypersurfaces, J. Differential Geom. 31 (1990), 401-416 Zbl0667.53003MR1037409
  5. M. Dajczer, L. Rodríguez, Complete real Kähler minimal submanifolds, J. Reine Angew. Math. 419 (1991), 1-8 Zbl0726.53041MR1116914
  6. L. Florit, W. Hui, F. Zheng, On real Kähler Euclidean submanifolds with non-negative Ricci curvature, J. Eur. Math. Soc. 7 (2005), 1-11 Zbl1090.53010MR2120988
  7. L. Florit, F. Zheng, Complete real Kähler Euclidean submanifolds in codimension two Zbl1133.53044
  8. L. Florit, F. Zheng, A local and global splitting result for real Kähler Euclidean submanifolds, Arch. Math. (Basel) 84 (2005), 88-95 Zbl1086.53030MR2106408
  9. P. Hartman, On isometric immersions in Euclidean space of manifolds with non–negative sectional curvatures II, Trans. Amer. Math. Soc. 147 (1970), 529-540 Zbl0194.22702
  10. P. Hartman, L. Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math. 81 (1959), 901-920 Zbl0094.16303MR126812
  11. P. Ryan, Kähler manifolds as real hypersurfaces, Duke Math. J. 40 (1973), 207-213 Zbl0257.53055MR336666
  12. T. Takahashi, A note on Kählerian hypersurfaces of spaces of constant curvature, Kumamoto J. Sci. (Math.) 9 (1972), 21-24 Zbl0236.53031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.