Mixed Hodge structure of affine hypersurfaces

Hossein Movasati[1]

  • [1] Instituto de Matemática Pura e Aplicada, IMPA Estrada Dona Castorina, 110 22460-320, Rio de Janeiro (Brazil)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 3, page 775-801
  • ISSN: 0373-0956

Abstract

top
In this article we give an algorithm which produces a basis of the n -th de Rham cohomology of the affine smooth hypersurface f - 1 ( t ) compatible with the mixed Hodge structure, where f is a polynomial in n + 1 variables and satisfies a certain regularity condition at infinity (and hence has isolated singularities). As an application we show that the notion of a Hodge cycle in regular fibers of f is given in terms of the vanishing of integrals of certain polynomial n -forms in n + 1 over topological n -cycles on the fibers of f . Since the n -th homology of a regular fiber is generated by vanishing cycles, this leads us to study Abelian integrals over them. Our result generalizes and uses the arguments of J. Steenbrink for quasi-homogeneous polynomials.

How to cite

top

Movasati, Hossein. "Mixed Hodge structure of affine hypersurfaces." Annales de l’institut Fourier 57.3 (2007): 775-801. <http://eudml.org/doc/10241>.

@article{Movasati2007,
abstract = {In this article we give an algorithm which produces a basis of the $n$-th de Rham cohomology of the affine smooth hypersurface $f^\{-1\}(t)$ compatible with the mixed Hodge structure, where $f$ is a polynomial in $n+1$ variables and satisfies a certain regularity condition at infinity (and hence has isolated singularities). As an application we show that the notion of a Hodge cycle in regular fibers of $f$ is given in terms of the vanishing of integrals of certain polynomial $n$-forms in $\mathbb\{C\}^\{n+1\}$ over topological $n$-cycles on the fibers of $f$. Since the $n$-th homology of a regular fiber is generated by vanishing cycles, this leads us to study Abelian integrals over them. Our result generalizes and uses the arguments of J. Steenbrink for quasi-homogeneous polynomials.},
affiliation = {Instituto de Matemática Pura e Aplicada, IMPA Estrada Dona Castorina, 110 22460-320, Rio de Janeiro (Brazil)},
author = {Movasati, Hossein},
journal = {Annales de l’institut Fourier},
keywords = {Mixed Hodge structures of affine varieties; Gauss-Manin connection; mixed Hodge structures},
language = {eng},
number = {3},
pages = {775-801},
publisher = {Association des Annales de l’institut Fourier},
title = {Mixed Hodge structure of affine hypersurfaces},
url = {http://eudml.org/doc/10241},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Movasati, Hossein
TI - Mixed Hodge structure of affine hypersurfaces
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 3
SP - 775
EP - 801
AB - In this article we give an algorithm which produces a basis of the $n$-th de Rham cohomology of the affine smooth hypersurface $f^{-1}(t)$ compatible with the mixed Hodge structure, where $f$ is a polynomial in $n+1$ variables and satisfies a certain regularity condition at infinity (and hence has isolated singularities). As an application we show that the notion of a Hodge cycle in regular fibers of $f$ is given in terms of the vanishing of integrals of certain polynomial $n$-forms in $\mathbb{C}^{n+1}$ over topological $n$-cycles on the fibers of $f$. Since the $n$-th homology of a regular fiber is generated by vanishing cycles, this leads us to study Abelian integrals over them. Our result generalizes and uses the arguments of J. Steenbrink for quasi-homogeneous polynomials.
LA - eng
KW - Mixed Hodge structures of affine varieties; Gauss-Manin connection; mixed Hodge structures
UR - http://eudml.org/doc/10241
ER -

References

top
  1. V. I. Arnolʼd, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. II, 83 (1988), Birkhäuser Boston Inc., Boston, MA Zbl0659.58002MR966191
  2. Armand Borel, André Haefliger, La classe d’homologie fondamentale d’un espace analytique, Bull. Soc. Math. France 89 (1961), 461-513 Zbl0102.38502MR149503
  3. Egbert Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103-161 Zbl0186.26101MR267607
  4. D. Chéniot, Vanishing cycles in a pencil of hyperplane sections of a non-singular quasi-projective variety, Proc. London Math. Soc. (3) 72 (1996), 515-544 Zbl0851.14003MR1376767
  5. Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971), 5-57 Zbl0219.14007MR498551
  6. Pierre Deligne, James S. Milne, Arthur Ogus, Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, 900 (1982), Springer-Verlag, Berlin Zbl0465.00010MR654325
  7. Alexandru Dimca, András Némethi, On the monodromy of complex polynomials, Duke Math. J. 108 (2001), 199-209 Zbl1020.32022MR1833390
  8. Igor Dolgachev, Weighted projective varieties, Group actions and vector fields (Vancouver, B.C., 1981) 956 (1982), 34-71, Springer, Berlin Zbl0516.14014MR704986
  9. Fouad El Zein, Théorie de Hodge des cycles évanescents, Ann. Sci. École Norm. Sup. (4) 19 (1986), 107-184 Zbl0538.14003MR860812
  10. Lubomir Gavrilov, Petrov modules and zeros of Abelian integrals, Bull. Sci. Math. 122 (1998), 571-584 Zbl0964.32022MR1668534
  11. Lubomir Gavrilov, The infinitesimal 16th Hilbert problem in the quadratic case, Invent. Math. 143 (2001), 449-497 Zbl0979.34024MR1817642
  12. M. Green, J. Murre, C. Voisin, Algebraic cycles and Hodge theory, 1594 (1994), Springer-Verlag, Berlin MR1335238
  13. G. M. Greuel, G. Pfister, H. Schönemann, Singular 2.0.4, A computer algebra system for polynomial computations (2001), Centre for Computer Algebra, University of Kaiserslautern Zbl0902.14040
  14. Phillip A. Griffiths, On the periods of certain rational integrals. I, II, Ann. of Math. (2) 90 (1969), 460-495; ibid. (2) 90 (1969), 496-541 Zbl0215.08103MR260733
  15. A. Grothendieck, On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1966), 95-103 Zbl0145.17602MR199194
  16. Vik. S. Kulikov, P. F. Kurchanov, Complex algebraic varieties: periods of integrals and Hodge structures [ MR1060327 (91k:14010)], Algebraic geometry, III 36 (1998), 1-217, 263–270, Springer, Berlin Zbl0881.14003MR1602375
  17. H. Movasati, S. Reiter, Hypergeometric series and Hodge cycles of four dimensional cubic hypersurfaces Zbl1110.14012
  18. Hossein Movasati, Calculation of mixed Hodge structures, Gauss-Manin connections and Picard-Fuchs equations Zbl1117.14014
  19. Hossein Movasati, Abelian integrals in holomorphic foliations, Rev. Mat. Iberoamericana 20 (2004), 183-204 Zbl1055.37057MR2076777
  20. Hossein Movasati, Center conditions: rigidity of logarithmic differential equations, J. Differential Equations 197 (2004), 197-217 Zbl1049.32033MR2030154
  21. Hossein Movasati, Relative cohomology with respect to a Lefschetz pencil, J. Reine Angew. Math. (2006), 175-199 Zbl1101.32014MR2248156
  22. R. Pink, Hodge structures over function fields Zbl0981.20036
  23. Claude Sabbah, Hypergeometric period for a tame polynomial, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 603-608 Zbl0967.32028MR1679978
  24. J. Scherk, J. H. M. Steenbrink, On the mixed Hodge structure on the cohomology of the Milnor fibre, Math. Ann. 271 (1985), 641-665 Zbl0618.14002MR790119
  25. Wilfried Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211-319 Zbl0278.14003MR382272
  26. Mathias Schulze, Good bases for tame polynomials, J. Symbolic Comput. 39 (2005), 103-126 Zbl1128.32017MR2168243
  27. Tetsuji Shioda, The Hodge conjecture for Fermat varieties, Math. Ann. 245 (1979), 175-184 Zbl0403.14007MR552586
  28. J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) (1977), 525-563, Sijthoff and Noordhoff, Alphen aan den Rijn Zbl0373.14007MR485870
  29. Joseph Steenbrink, Intersection form for quasi-homogeneous singularities, Compositio Math. 34 (1977), 211-223 Zbl0347.14001MR453735
  30. Joseph Steenbrink, Steven Zucker, Variation of mixed Hodge structure. I, Invent. Math. 80 (1985), 489-542 Zbl0626.14007MR791673
  31. Sampei Usui, Effect of automorphisms on variation of Hodge structures, J. Math. Kyoto Univ. 21 (1981), 645-672 Zbl0497.14003MR637511
  32. A. N. Varčenko, Asymptotic Hodge structure on vanishing cohomology, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), 540-591, 688 Zbl0476.14002MR623350
  33. Steven Zucker, The Hodge conjecture for cubic fourfolds, Compositio Math. 34 (1977), 199-209 Zbl0347.14005MR453741

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.