Mixed Hodge structure of affine hypersurfaces
- [1] Instituto de Matemática Pura e Aplicada, IMPA Estrada Dona Castorina, 110 22460-320, Rio de Janeiro (Brazil)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 3, page 775-801
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMovasati, Hossein. "Mixed Hodge structure of affine hypersurfaces." Annales de l’institut Fourier 57.3 (2007): 775-801. <http://eudml.org/doc/10241>.
@article{Movasati2007,
abstract = {In this article we give an algorithm which produces a basis of the $n$-th de Rham cohomology of the affine smooth hypersurface $f^\{-1\}(t)$ compatible with the mixed Hodge structure, where $f$ is a polynomial in $n+1$ variables and satisfies a certain regularity condition at infinity (and hence has isolated singularities). As an application we show that the notion of a Hodge cycle in regular fibers of $f$ is given in terms of the vanishing of integrals of certain polynomial $n$-forms in $\mathbb\{C\}^\{n+1\}$ over topological $n$-cycles on the fibers of $f$. Since the $n$-th homology of a regular fiber is generated by vanishing cycles, this leads us to study Abelian integrals over them. Our result generalizes and uses the arguments of J. Steenbrink for quasi-homogeneous polynomials.},
affiliation = {Instituto de Matemática Pura e Aplicada, IMPA Estrada Dona Castorina, 110 22460-320, Rio de Janeiro (Brazil)},
author = {Movasati, Hossein},
journal = {Annales de l’institut Fourier},
keywords = {Mixed Hodge structures of affine varieties; Gauss-Manin connection; mixed Hodge structures},
language = {eng},
number = {3},
pages = {775-801},
publisher = {Association des Annales de l’institut Fourier},
title = {Mixed Hodge structure of affine hypersurfaces},
url = {http://eudml.org/doc/10241},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Movasati, Hossein
TI - Mixed Hodge structure of affine hypersurfaces
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 3
SP - 775
EP - 801
AB - In this article we give an algorithm which produces a basis of the $n$-th de Rham cohomology of the affine smooth hypersurface $f^{-1}(t)$ compatible with the mixed Hodge structure, where $f$ is a polynomial in $n+1$ variables and satisfies a certain regularity condition at infinity (and hence has isolated singularities). As an application we show that the notion of a Hodge cycle in regular fibers of $f$ is given in terms of the vanishing of integrals of certain polynomial $n$-forms in $\mathbb{C}^{n+1}$ over topological $n$-cycles on the fibers of $f$. Since the $n$-th homology of a regular fiber is generated by vanishing cycles, this leads us to study Abelian integrals over them. Our result generalizes and uses the arguments of J. Steenbrink for quasi-homogeneous polynomials.
LA - eng
KW - Mixed Hodge structures of affine varieties; Gauss-Manin connection; mixed Hodge structures
UR - http://eudml.org/doc/10241
ER -
References
top- V. I. Arnolʼd, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. II, 83 (1988), Birkhäuser Boston Inc., Boston, MA Zbl0659.58002MR966191
- Armand Borel, André Haefliger, La classe d’homologie fondamentale d’un espace analytique, Bull. Soc. Math. France 89 (1961), 461-513 Zbl0102.38502MR149503
- Egbert Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103-161 Zbl0186.26101MR267607
- D. Chéniot, Vanishing cycles in a pencil of hyperplane sections of a non-singular quasi-projective variety, Proc. London Math. Soc. (3) 72 (1996), 515-544 Zbl0851.14003MR1376767
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971), 5-57 Zbl0219.14007MR498551
- Pierre Deligne, James S. Milne, Arthur Ogus, Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, 900 (1982), Springer-Verlag, Berlin Zbl0465.00010MR654325
- Alexandru Dimca, András Némethi, On the monodromy of complex polynomials, Duke Math. J. 108 (2001), 199-209 Zbl1020.32022MR1833390
- Igor Dolgachev, Weighted projective varieties, Group actions and vector fields (Vancouver, B.C., 1981) 956 (1982), 34-71, Springer, Berlin Zbl0516.14014MR704986
- Fouad El Zein, Théorie de Hodge des cycles évanescents, Ann. Sci. École Norm. Sup. (4) 19 (1986), 107-184 Zbl0538.14003MR860812
- Lubomir Gavrilov, Petrov modules and zeros of Abelian integrals, Bull. Sci. Math. 122 (1998), 571-584 Zbl0964.32022MR1668534
- Lubomir Gavrilov, The infinitesimal 16th Hilbert problem in the quadratic case, Invent. Math. 143 (2001), 449-497 Zbl0979.34024MR1817642
- M. Green, J. Murre, C. Voisin, Algebraic cycles and Hodge theory, 1594 (1994), Springer-Verlag, Berlin MR1335238
- G. M. Greuel, G. Pfister, H. Schönemann, Singular 2.0.4, A computer algebra system for polynomial computations (2001), Centre for Computer Algebra, University of Kaiserslautern Zbl0902.14040
- Phillip A. Griffiths, On the periods of certain rational integrals. I, II, Ann. of Math. (2) 90 (1969), 460-495; ibid. (2) 90 (1969), 496-541 Zbl0215.08103MR260733
- A. Grothendieck, On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1966), 95-103 Zbl0145.17602MR199194
- Vik. S. Kulikov, P. F. Kurchanov, Complex algebraic varieties: periods of integrals and Hodge structures [ MR1060327 (91k:14010)], Algebraic geometry, III 36 (1998), 1-217, 263–270, Springer, Berlin Zbl0881.14003MR1602375
- H. Movasati, S. Reiter, Hypergeometric series and Hodge cycles of four dimensional cubic hypersurfaces Zbl1110.14012
- Hossein Movasati, Calculation of mixed Hodge structures, Gauss-Manin connections and Picard-Fuchs equations Zbl1117.14014
- Hossein Movasati, Abelian integrals in holomorphic foliations, Rev. Mat. Iberoamericana 20 (2004), 183-204 Zbl1055.37057MR2076777
- Hossein Movasati, Center conditions: rigidity of logarithmic differential equations, J. Differential Equations 197 (2004), 197-217 Zbl1049.32033MR2030154
- Hossein Movasati, Relative cohomology with respect to a Lefschetz pencil, J. Reine Angew. Math. (2006), 175-199 Zbl1101.32014MR2248156
- R. Pink, Hodge structures over function fields Zbl0981.20036
- Claude Sabbah, Hypergeometric period for a tame polynomial, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 603-608 Zbl0967.32028MR1679978
- J. Scherk, J. H. M. Steenbrink, On the mixed Hodge structure on the cohomology of the Milnor fibre, Math. Ann. 271 (1985), 641-665 Zbl0618.14002MR790119
- Wilfried Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211-319 Zbl0278.14003MR382272
- Mathias Schulze, Good bases for tame polynomials, J. Symbolic Comput. 39 (2005), 103-126 Zbl1128.32017MR2168243
- Tetsuji Shioda, The Hodge conjecture for Fermat varieties, Math. Ann. 245 (1979), 175-184 Zbl0403.14007MR552586
- J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) (1977), 525-563, Sijthoff and Noordhoff, Alphen aan den Rijn Zbl0373.14007MR485870
- Joseph Steenbrink, Intersection form for quasi-homogeneous singularities, Compositio Math. 34 (1977), 211-223 Zbl0347.14001MR453735
- Joseph Steenbrink, Steven Zucker, Variation of mixed Hodge structure. I, Invent. Math. 80 (1985), 489-542 Zbl0626.14007MR791673
- Sampei Usui, Effect of automorphisms on variation of Hodge structures, J. Math. Kyoto Univ. 21 (1981), 645-672 Zbl0497.14003MR637511
- A. N. Varčenko, Asymptotic Hodge structure on vanishing cohomology, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), 540-591, 688 Zbl0476.14002MR623350
- Steven Zucker, The Hodge conjecture for cubic fourfolds, Compositio Math. 34 (1977), 199-209 Zbl0347.14005MR453741
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.