A Singularity Theorem for Twistor Spinors

Florin Alexandru Belgun[1]; Nicolas Ginoux[2]; Hans-Bert Rademacher[1]

  • [1] Universität Leipzig Mathematisches Institut Johannisgasse 26 04109 Leipzig (Allemagne)
  • [2] Universität Potsdam Institut für Mathematik - Geometrie Am Neuen Palais 10 14469 Potsdam (Allemagne)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 4, page 1135-1159
  • ISSN: 0373-0956

Abstract

top
We study spin structures on orbifolds. In particular, we show that if the singular set has codimension greater than 2, an orbifold is spin if and only if its smooth part is. On compact orbifolds, we show that any non-trivial twistor spinor admits at most one zero which is singular unless the orbifold is conformally equivalent to a round sphere. We show the sharpness of our results through examples.

How to cite

top

Belgun, Florin Alexandru, Ginoux, Nicolas, and Rademacher, Hans-Bert. "A Singularity Theorem for Twistor Spinors." Annales de l’institut Fourier 57.4 (2007): 1135-1159. <http://eudml.org/doc/10253>.

@article{Belgun2007,
abstract = {We study spin structures on orbifolds. In particular, we show that if the singular set has codimension greater than 2, an orbifold is spin if and only if its smooth part is. On compact orbifolds, we show that any non-trivial twistor spinor admits at most one zero which is singular unless the orbifold is conformally equivalent to a round sphere. We show the sharpness of our results through examples.},
affiliation = {Universität Leipzig Mathematisches Institut Johannisgasse 26 04109 Leipzig (Allemagne); Universität Potsdam Institut für Mathematik - Geometrie Am Neuen Palais 10 14469 Potsdam (Allemagne); Universität Leipzig Mathematisches Institut Johannisgasse 26 04109 Leipzig (Allemagne)},
author = {Belgun, Florin Alexandru, Ginoux, Nicolas, Rademacher, Hans-Bert},
journal = {Annales de l’institut Fourier},
keywords = {Orbifolds; twistor-spinors; ALE spaces; orbifolds; ale spaces},
language = {eng},
number = {4},
pages = {1135-1159},
publisher = {Association des Annales de l’institut Fourier},
title = {A Singularity Theorem for Twistor Spinors},
url = {http://eudml.org/doc/10253},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Belgun, Florin Alexandru
AU - Ginoux, Nicolas
AU - Rademacher, Hans-Bert
TI - A Singularity Theorem for Twistor Spinors
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 4
SP - 1135
EP - 1159
AB - We study spin structures on orbifolds. In particular, we show that if the singular set has codimension greater than 2, an orbifold is spin if and only if its smooth part is. On compact orbifolds, we show that any non-trivial twistor spinor admits at most one zero which is singular unless the orbifold is conformally equivalent to a round sphere. We show the sharpness of our results through examples.
LA - eng
KW - Orbifolds; twistor-spinors; ALE spaces; orbifolds; ale spaces
UR - http://eudml.org/doc/10253
ER -

References

top
  1. Helga Baum, Thomas Friedrich, Ralf Grunewald, Ines Kath, Twistors and Killing spinors on Riemannian manifolds, 124 (1991), B. G. Teubner Verlagsgesellschaft mbH, Stuttgart Zbl0734.53003MR1164864
  2. J.E. Borzellino, Orbifolds of maximal diameter, Ind. Univ. Math. J. 42 (1993), 37-53 Zbl0801.53031MR1218706
  3. J.E. Borzellino, S.-H. Zhu, The splitting theorem for orbifolds, Ill. J. Math. 38 (1994), 679-691 Zbl0798.53044MR1283015
  4. E. Calabi, Métriques kählériennes et fibrés holomorphes, Annal. scient. École Norm. Sup. 12 (1979), 269-294 Zbl0431.53056MR543218
  5. A. Degeratu, Geometrical McKay Correspondence for Isolated Singularities, (2003) 
  6. C. Dong, K. Liu, X. Ma, On orbifold elliptic genus, Orbifolds in mathematics and physics (Madison, WI, 2001) 310 (2002), 87-105, Amer. Math. Soc., Providence Zbl1042.58010MR1950942
  7. T. Eguchi, A.J. Hanson, Asymptotically flat solutions to Euclidean gravity, Phys. Lett. 74B (1978), 249-251 
  8. D.Z. Freedman, G.W. Gibbons, Remarks on supersymmetry and Kähler geometry, Superspace and Supergravity (1981), Cambridge Univ. Press 
  9. T. Friedrich, Dirac-Operatoren in der riemannschen Geometrie, (1997), Vieweg Verlag, Braunschweig MR1476425
  10. G.W. Gibbons, S.W. Hawking, Gravitational multi-instantons, Phys. Lett. 78 B (1978), 430-432 
  11. D. Joyce, Compact manifolds with special holonomy, (2000), Oxford Math. Monographs, Oxford Zbl1027.53052MR1787733
  12. P.B. Kronheimer, A Torelli-type theorem for gravitational instantons, J. Diff. Geom. 29 (1989), 685-697 Zbl0671.53046MR992335
  13. P.B. Kronheimer, The construction of ALE spaces as hyperkähler quotients, J. Diff. Geom. 29 (1989), 665-683 Zbl0671.53045MR992334
  14. W. Kühnel, H.-B. Rademacher, Twistor Spinors and Gravitational Instantons, Lett. Math. Phys. 38 (1996), 411-419 Zbl0860.53029MR1421685
  15. W. Kühnel, H.-B. Rademacher, Conformal completion of U ( n ) –invariant Ricci flat Kähler metrics at infinity, Zeitschr. Anal. Anwend. 16 (1997), 113-117 Zbl0870.53040MR1453395
  16. W. Kühnel, H.-B. Rademacher, Asymptotically Euclidean Manifolds and Twistor Spinors, Commun. Math. Phys. 196 (1998), 67-76 Zbl0929.53023MR1643509
  17. A. Lichnerowicz, Killing spinors, twistor–spinors and Hijazi inequality, J. Geom. Phys. 5 (1988), 2-18 Zbl0678.53018MR1027531
  18. P. Petersen, Riemannian Geometry, 171 (1998), Springer Zbl0914.53001MR1480173
  19. A. Sardo-Infirri, Partial Resolutions of orbifold singularities via moduli spaces of HYM-type bundles 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.