Integrability of Jacobi and Poisson structures

Marius Crainic[1]; Chenchang Zhu[2]

  • [1] Utrecht University Department of Mathematics 3508 TA Utrecht (The Netherlands)
  • [2] University of California Department of Mathematics Berkeley, CA 94720 (U.S.A.)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 4, page 1181-1216
  • ISSN: 0373-0956

Abstract

top
We discuss the integrability of Jacobi manifolds by contact groupoids, and then look at what the Jacobi point of view brings new into Poisson geometry. In particular, using contact groupoids, we prove a Kostant-type theorem on the prequantization of symplectic groupoids, which answers a question posed by Weinstein and Xu. The methods used are those of Crainic-Fernandes on A -paths and monodromy group(oid)s of algebroids. In particular, most of the results we obtain are valid also in the non-integrable case.

How to cite

top

Crainic, Marius, and Zhu, Chenchang. "Integrability of Jacobi and Poisson structures." Annales de l’institut Fourier 57.4 (2007): 1181-1216. <http://eudml.org/doc/10255>.

@article{Crainic2007,
abstract = {We discuss the integrability of Jacobi manifolds by contact groupoids, and then look at what the Jacobi point of view brings new into Poisson geometry. In particular, using contact groupoids, we prove a Kostant-type theorem on the prequantization of symplectic groupoids, which answers a question posed by Weinstein and Xu. The methods used are those of Crainic-Fernandes on $A$-paths and monodromy group(oid)s of algebroids. In particular, most of the results we obtain are valid also in the non-integrable case.},
affiliation = {Utrecht University Department of Mathematics 3508 TA Utrecht (The Netherlands); University of California Department of Mathematics Berkeley, CA 94720 (U.S.A.)},
author = {Crainic, Marius, Zhu, Chenchang},
journal = {Annales de l’institut Fourier},
keywords = {Jacobi structure; Poisson geometry; prequantization; contact groupoids; integration},
language = {eng},
number = {4},
pages = {1181-1216},
publisher = {Association des Annales de l’institut Fourier},
title = {Integrability of Jacobi and Poisson structures},
url = {http://eudml.org/doc/10255},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Crainic, Marius
AU - Zhu, Chenchang
TI - Integrability of Jacobi and Poisson structures
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 4
SP - 1181
EP - 1216
AB - We discuss the integrability of Jacobi manifolds by contact groupoids, and then look at what the Jacobi point of view brings new into Poisson geometry. In particular, using contact groupoids, we prove a Kostant-type theorem on the prequantization of symplectic groupoids, which answers a question posed by Weinstein and Xu. The methods used are those of Crainic-Fernandes on $A$-paths and monodromy group(oid)s of algebroids. In particular, most of the results we obtain are valid also in the non-integrable case.
LA - eng
KW - Jacobi structure; Poisson geometry; prequantization; contact groupoids; integration
UR - http://eudml.org/doc/10255
ER -

References

top
  1. David E. Blair, Riemannian geometry of contact and symplectic manifolds, 203 (2002), Birkhäuser Boston Inc., Boston, MA Zbl1011.53001MR1874240
  2. Henrique Bursztyn, Marius Crainic, Alan Weinstein, Chenchang Zhu, Integration of twisted Dirac brackets, Duke Math. J. 123 (2004), 549-607 Zbl1067.58016MR2068969
  3. Ana Cannas da Silva, Alan Weinstein, Geometric models for noncommutative algebras, 10 (1999), American Mathematical Society, Providence, RI Zbl1135.58300MR1747916
  4. Alberto S. Cattaneo, Giovanni Felder, Poisson sigma models and symplectic groupoids, Quantization of singular symplectic quotients 198 (2001), 61-93, Birkhäuser, Basel Zbl1038.53074MR1938552
  5. Marius Crainic, Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes, Comment. Math. Helv. 78 (2003), 681-721 Zbl1041.58007MR2016690
  6. Marius Crainic, Rui Loja Fernandes, Integrability of Lie brackets, Ann. of Math. (2) 157 (2003), 575-620 Zbl1037.22003MR1973056
  7. Marius Crainic, Rui Loja Fernandes, Integrability of Poisson brackets, J. Differential Geom. 66 (2004), 71-137 Zbl1066.53131MR2128714
  8. Pierre Dazord, Intégration d’algèbres de Lie locales et groupoïdes de contact, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 959-964 Zbl0843.57036
  9. Pierre Dazord, Sur l’intégration des algèbres de Lie locales et la préquantification, Bull. Sci. Math. 121 (1997), 423-462 Zbl1053.53523
  10. Pierre Dazord, André Lichnerowicz, Charles-Michel Marle, Structure locale des variétés de Jacobi, J. Math. Pures Appl. (9) 70 (1991), 101-152 Zbl0659.53033MR1091922
  11. Fouzia Guedira, André Lichnerowicz, Géométrie des algèbres de Lie locales de Kirillov, J. Math. Pures Appl. (9) 63 (1984), 407-484 Zbl0562.53029MR789560
  12. Philip J. Higgins, Kirill Mackenzie, Algebraic constructions in the category of Lie algebroids, J. Algebra 129 (1990), 194-230 Zbl0696.22007MR1037400
  13. David Iglesias-Ponte, Juan C. Marrero, Jacobi groupoids and generalized Lie bialgebroids, J. Geom. Phys. 48 (2003), 385-425 Zbl1037.17023MR2007602
  14. Yvan Kerbrat, Zoubida Souici-Benhammadi, Variétés de Jacobi et groupoïdes de contact, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 81-86 Zbl0804.58015MR1228970
  15. A. A. Kirillov, Local Lie algebras, Uspehi Mat. Nauk 31 (1976), 57-76 Zbl0352.58014MR438390
  16. André Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures Appl. (9) 57 (1978), 453-488 Zbl0407.53025MR524629
  17. Ieke Moerdijk, Janez Mrčun, On integrability of infinitesimal actions, Amer. J. Math. 124 (2002), 567-593 Zbl1013.58010MR1902889
  18. Richard S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. No. 22 (1957) Zbl0178.26502MR121424
  19. Alan Weinstein, Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc. (N.S.) 16 (1987), 101-104 Zbl0618.58020MR866024
  20. Alan Weinstein, Ping Xu, Extensions of symplectic groupoids and quantization, J. Reine Angew. Math. 417 (1991), 159-189 Zbl0722.58021MR1103911
  21. Marco Zambon, Chenchang Zhu, Contact reduction and groupoid actions, Trans. Amer. Math. Soc. 358 (2006), 1365-1401 (electronic) Zbl1092.53056MR2187657

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.