Integrability of Jacobi and Poisson structures
Marius Crainic[1]; Chenchang Zhu[2]
- [1] Utrecht University Department of Mathematics 3508 TA Utrecht (The Netherlands)
- [2] University of California Department of Mathematics Berkeley, CA 94720 (U.S.A.)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 4, page 1181-1216
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCrainic, Marius, and Zhu, Chenchang. "Integrability of Jacobi and Poisson structures." Annales de l’institut Fourier 57.4 (2007): 1181-1216. <http://eudml.org/doc/10255>.
@article{Crainic2007,
abstract = {We discuss the integrability of Jacobi manifolds by contact groupoids, and then look at what the Jacobi point of view brings new into Poisson geometry. In particular, using contact groupoids, we prove a Kostant-type theorem on the prequantization of symplectic groupoids, which answers a question posed by Weinstein and Xu. The methods used are those of Crainic-Fernandes on $A$-paths and monodromy group(oid)s of algebroids. In particular, most of the results we obtain are valid also in the non-integrable case.},
affiliation = {Utrecht University Department of Mathematics 3508 TA Utrecht (The Netherlands); University of California Department of Mathematics Berkeley, CA 94720 (U.S.A.)},
author = {Crainic, Marius, Zhu, Chenchang},
journal = {Annales de l’institut Fourier},
keywords = {Jacobi structure; Poisson geometry; prequantization; contact groupoids; integration},
language = {eng},
number = {4},
pages = {1181-1216},
publisher = {Association des Annales de l’institut Fourier},
title = {Integrability of Jacobi and Poisson structures},
url = {http://eudml.org/doc/10255},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Crainic, Marius
AU - Zhu, Chenchang
TI - Integrability of Jacobi and Poisson structures
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 4
SP - 1181
EP - 1216
AB - We discuss the integrability of Jacobi manifolds by contact groupoids, and then look at what the Jacobi point of view brings new into Poisson geometry. In particular, using contact groupoids, we prove a Kostant-type theorem on the prequantization of symplectic groupoids, which answers a question posed by Weinstein and Xu. The methods used are those of Crainic-Fernandes on $A$-paths and monodromy group(oid)s of algebroids. In particular, most of the results we obtain are valid also in the non-integrable case.
LA - eng
KW - Jacobi structure; Poisson geometry; prequantization; contact groupoids; integration
UR - http://eudml.org/doc/10255
ER -
References
top- David E. Blair, Riemannian geometry of contact and symplectic manifolds, 203 (2002), Birkhäuser Boston Inc., Boston, MA Zbl1011.53001MR1874240
- Henrique Bursztyn, Marius Crainic, Alan Weinstein, Chenchang Zhu, Integration of twisted Dirac brackets, Duke Math. J. 123 (2004), 549-607 Zbl1067.58016MR2068969
- Ana Cannas da Silva, Alan Weinstein, Geometric models for noncommutative algebras, 10 (1999), American Mathematical Society, Providence, RI Zbl1135.58300MR1747916
- Alberto S. Cattaneo, Giovanni Felder, Poisson sigma models and symplectic groupoids, Quantization of singular symplectic quotients 198 (2001), 61-93, Birkhäuser, Basel Zbl1038.53074MR1938552
- Marius Crainic, Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes, Comment. Math. Helv. 78 (2003), 681-721 Zbl1041.58007MR2016690
- Marius Crainic, Rui Loja Fernandes, Integrability of Lie brackets, Ann. of Math. (2) 157 (2003), 575-620 Zbl1037.22003MR1973056
- Marius Crainic, Rui Loja Fernandes, Integrability of Poisson brackets, J. Differential Geom. 66 (2004), 71-137 Zbl1066.53131MR2128714
- Pierre Dazord, Intégration d’algèbres de Lie locales et groupoïdes de contact, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 959-964 Zbl0843.57036
- Pierre Dazord, Sur l’intégration des algèbres de Lie locales et la préquantification, Bull. Sci. Math. 121 (1997), 423-462 Zbl1053.53523
- Pierre Dazord, André Lichnerowicz, Charles-Michel Marle, Structure locale des variétés de Jacobi, J. Math. Pures Appl. (9) 70 (1991), 101-152 Zbl0659.53033MR1091922
- Fouzia Guedira, André Lichnerowicz, Géométrie des algèbres de Lie locales de Kirillov, J. Math. Pures Appl. (9) 63 (1984), 407-484 Zbl0562.53029MR789560
- Philip J. Higgins, Kirill Mackenzie, Algebraic constructions in the category of Lie algebroids, J. Algebra 129 (1990), 194-230 Zbl0696.22007MR1037400
- David Iglesias-Ponte, Juan C. Marrero, Jacobi groupoids and generalized Lie bialgebroids, J. Geom. Phys. 48 (2003), 385-425 Zbl1037.17023MR2007602
- Yvan Kerbrat, Zoubida Souici-Benhammadi, Variétés de Jacobi et groupoïdes de contact, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 81-86 Zbl0804.58015MR1228970
- A. A. Kirillov, Local Lie algebras, Uspehi Mat. Nauk 31 (1976), 57-76 Zbl0352.58014MR438390
- André Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures Appl. (9) 57 (1978), 453-488 Zbl0407.53025MR524629
- Ieke Moerdijk, Janez Mrčun, On integrability of infinitesimal actions, Amer. J. Math. 124 (2002), 567-593 Zbl1013.58010MR1902889
- Richard S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. No. 22 (1957) Zbl0178.26502MR121424
- Alan Weinstein, Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc. (N.S.) 16 (1987), 101-104 Zbl0618.58020MR866024
- Alan Weinstein, Ping Xu, Extensions of symplectic groupoids and quantization, J. Reine Angew. Math. 417 (1991), 159-189 Zbl0722.58021MR1103911
- Marco Zambon, Chenchang Zhu, Contact reduction and groupoid actions, Trans. Amer. Math. Soc. 358 (2006), 1365-1401 (electronic) Zbl1092.53056MR2187657
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.