A fixed point theorem in o-minimal structures

Mário J. Edmundo[1]

  • [1] Universidade de Lisboa CMAF Av. Prof. Gama Pinto 2 1649-003 Lisboa (Portugal)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 5, page 1441-1450
  • ISSN: 0373-0956

Abstract

top
Here we prove an o-minimal fixed point theorem for definable continuous maps on definably compact definable sets, generalizing Brumfiel’s version of the Hopf fixed point theorem for semi-algebraic maps.

How to cite

top

Edmundo, Mário J.. "A fixed point theorem in o-minimal structures." Annales de l’institut Fourier 57.5 (2007): 1441-1450. <http://eudml.org/doc/10264>.

@article{Edmundo2007,
abstract = {Here we prove an o-minimal fixed point theorem for definable continuous maps on definably compact definable sets, generalizing Brumfiel’s version of the Hopf fixed point theorem for semi-algebraic maps.},
affiliation = {Universidade de Lisboa CMAF Av. Prof. Gama Pinto 2 1649-003 Lisboa (Portugal)},
author = {Edmundo, Mário J.},
journal = {Annales de l’institut Fourier},
keywords = {O-minimal structures; fixed point theorems; o-minimal structures},
language = {eng},
number = {5},
pages = {1441-1450},
publisher = {Association des Annales de l’institut Fourier},
title = {A fixed point theorem in o-minimal structures},
url = {http://eudml.org/doc/10264},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Edmundo, Mário J.
TI - A fixed point theorem in o-minimal structures
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 5
SP - 1441
EP - 1450
AB - Here we prove an o-minimal fixed point theorem for definable continuous maps on definably compact definable sets, generalizing Brumfiel’s version of the Hopf fixed point theorem for semi-algebraic maps.
LA - eng
KW - O-minimal structures; fixed point theorems; o-minimal structures
UR - http://eudml.org/doc/10264
ER -

References

top
  1. A. Berarducci, M. Otero, Transfer methods for o-minimal topology, J. Symbolic Logic 68 (2003), 785-794 Zbl1060.03059MR2000077
  2. J. Bochnak, M. Coste, M-F. Roy, Real algebraic geometry, (1998), Springer-Verlag Zbl0912.14023MR1659509
  3. G. W. Brumfiel, A Hopf fixed point theorem for semi-algebraic maps, (1992), Springer Verlag, Berlin Zbl0791.55003MR1226249
  4. M. Coste, An introduction to o-minimal geometry 
  5. H. Delfs, M. Knebusch, On the homology of algebraic varieties over real closed fields, J. reine u.angew. Math. 335 (1982), 122-163 Zbl0484.14006MR667464
  6. A. Dold, Lectures on algebraic topology, (1995), Springer Verlag Zbl0872.55001MR1335915
  7. L. van den Dries, Tame topology and o-minimal structures, (1998), Cambridge University Press Zbl0953.03045MR1633348
  8. M. Edmundo, M. Otero, Definably compact abelian groups, J. Math. Logic 4 (2004), 163-180 Zbl1070.03025MR2114966
  9. Y. Peterzil, C. Steinhorn, Definable compacteness and definable subgroups of o-minimal groups, J. London Math. Soc. 59 (1999), 769-786 Zbl0935.03047MR1709079
  10. J. Rotman, An introduction to algebraic topology, (1988), Springer Verlag Zbl0661.55001MR957919
  11. A. Woerheide, O-minimal homology, (1996) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.