The twistor space of a dimensional almost Hermitian manifold
- [1] Université de Cergy-Pontoise Département de Mathématiques site de Saint-Martin 2, av. Adolphe Chauvin 95302 Cergy-Pontoise Cedex (France)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 5, page 1451-1485
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. F. Atiyah, N. J. Hitchin, I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser.A 362 (1978), 425-461 Zbl0389.53011MR506229
- L. Bérard Bergery, T. Ochiai, On some generalizations of the construction of twistor spaces, Global Riemannian geometry (1984), 52-58, Ellis Horwood, Chichester Zbl0639.53042MR757205
- G. Bor, L. Hernández Lamoneda, Bochner formulae for orthogonal -structures on compact manifolds, Differential Geom. Appl. 21 (2004), 79-92 Zbl1057.53033MR2067460
- R. L. Bryant, Böchner-Kähler metrics, J. Amer. Math. Soc. 14 (2001), 623-715 Zbl1006.53019MR1824987
- F. E. Burstall, J. H. Rawnsley, Twistor theory for Riemannian symmetric spaces with applications to harmonic maps of Riemann surfaces, Lecture Notes in Math. 1424 (1990), Springer-Verlag, Berlin, Heidelberg Zbl0699.53059MR1059054
- J.-B. Butruille, Classification des variétés approximativement Kählériennes homogènes, Ann. Global Anal. Geom. 27 (2005), 201-225 Zbl1079.53044MR2158165
- J.-B. Butruille, Variétés de Gray et géométries spéciales en dimension 6, (2005)
- S. Chiossi, S. Salamon, The intrinsic torsion of and structures, Differential Geometry, Valencia 2001 (2002), 115-133, World Sci. Publishing, River Edge, NJ Zbl1024.53018MR1922042
- R. Cleyton, S. Ivanov, Conformal equivalence between certain geometries in dimension 6 and 7 Zbl1204.53019
- L. David, P. Gauduchon, The Bochner-flat geometry of weighted projective spaces, in ‘Perspectives in Riemannian geometry’, CRM Proc. Lecture Notes 40 (2006), 109-156, Amer. Math. Soc., Providence Zbl1109.32019
- M. Falcitelli, A. Farinola, S. Salamon, Almost-Hermitian geometry, Diff. Geom. Appl. 4 (1994), 259-282 Zbl0813.53044MR1299398
- A. Gray, The structure of nearly Kähler manifolds, Math. Ann. 223 (1976), 233-248 Zbl0345.53019MR417965
- A. Gray, L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (1980), 35-58 Zbl0444.53032MR581924
- L. Hervella, E. Vidal, Nouvelles géométries pseudo-Kählériennes et , C. R. Acad. Sci. Paris 283 (1976), 115-118 Zbl0331.53026MR431008
- N. Hitchin, Kählerian twistor spaces, Proc. Lond. Math. Soc. (3) 43 (1981), 133-150 Zbl0474.14024MR623721
- N. Hitchin, The geometry of three-forms in six dimensions, J. Diff. Geom. 55 (2000), 547-576 Zbl1036.53042MR1863733
- N. Hitchin, Stable forms and special metrics, Global differential geometry : the mathematical legacy of A.Gray, Contemp. Math. 288 (2001), 70-89, Amer. Math. Soc., Providence Zbl1004.53034MR1871001
- V. Kirichenko, K-spaces of maximal rank, Mat. Zametki 22 (1977), 465-476 Zbl0414.53018MR474103
- F. Martin Cabrera, On Riemannian manifolds with structures, Boll. Un. Mat. Ital. A 10 (1996), 99-112 Zbl0861.53021MR1386249
- F. Martin Cabrera, Special almost Hermitian geometry, J. Geom. Phys. 55 (2005), 450-470 Zbl1107.53019MR2162420
- P. A. Nagy, On nearly Kähler geometry, Ann. Global Anal. Geom 22 (2002), 167-178 Zbl1020.53030MR1923275
- N. R. O’Brian, J. H. Rawnsley, Twistor spaces, Ann. Global Anal. Geom. 3 (1985), 29-58 Zbl0526.53057
- R. Penrose, The twistor programme, Reports on Math. Phys. 12 (1977), 65-76 MR465032
- R. Reyes Carrión, Some special geometries defined by Lie groups, (1993)
- S. Salamon, Riemannian geometry and holonomy groups, Pitman Research Notes in Math. 201 (1989), Longman Scientific and Technical, New York Zbl0685.53001MR1004008
- M. J. Slupinski, The twistor space of the conformal six sphere and vector bundles on quadrics, J. Geom. Phys. 19 (1996), 246-266 Zbl0856.32020MR1397410
- F. Tricerri, L. Vanhecke, Curvature tensors on almost Hermitian manifolds, Trans. Amer. math. Soc. 267 (1981), 365-397 Zbl0484.53014MR626479