A.e. convergence of spectral sums on Lie groups

Christopher Meaney[1]; Detlef Müller[2]; Elena Prestini[3]

  • [1] Macquarie University Department of Mathematics North Ryde NSW 2109 (Australia)
  • [2] C.A.-Universität Kiel Mathematisches Seminar Ludewig-Meyn-Str.4 D-24098 Kiel (Germany)
  • [3] Università di Roma “Tor Vergata" Dipartimento di Matematica Via della Ricerca Scientifica 00133 Roma (Italie)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 5, page 1509-1520
  • ISSN: 0373-0956

Abstract

top
Let be a right-invariant sub-Laplacian on a connected Lie group G , and let S R f : = 0 R d E λ f , R 0 , denote the associated “spherical partial sums,” where = 0 λ d E λ is the spectral resolution of . We prove that S R f ( x ) converges a.e. to f ( x ) as R under the assumption log ( 2 + ) f L 2 ( G ) .

How to cite

top

Meaney, Christopher, Müller, Detlef, and Prestini, Elena. "A.e. convergence of spectral sums on Lie groups." Annales de l’institut Fourier 57.5 (2007): 1509-1520. <http://eudml.org/doc/10267>.

@article{Meaney2007,
abstract = {Let $\mathcal\{L\}$ be a right-invariant sub-Laplacian on a connected Lie group $G,$ and let $S_Rf:= \int _0^R dE_\lambda f,\ R\ge 0,$ denote the associated “spherical partial sums,” where $\mathcal\{L\}=\int _0^\infty \lambda \, dE_\lambda $ is the spectral resolution of $\mathcal\{L\}.$ We prove that $S_Rf(x)$ converges a.e. to $f(x)$ as $R\rightarrow \infty $ under the assumption $\log (2+\mathcal\{L\})f\in L^2(G).$},
affiliation = {Macquarie University Department of Mathematics North Ryde NSW 2109 (Australia); C.A.-Universität Kiel Mathematisches Seminar Ludewig-Meyn-Str.4 D-24098 Kiel (Germany); Università di Roma “Tor Vergata" Dipartimento di Matematica Via della Ricerca Scientifica 00133 Roma (Italie)},
author = {Meaney, Christopher, Müller, Detlef, Prestini, Elena},
journal = {Annales de l’institut Fourier},
keywords = {Rademacher-Menshov theorem; sub-Laplacian; spectral theory; sub-Laplacian spectral theory},
language = {eng},
number = {5},
pages = {1509-1520},
publisher = {Association des Annales de l’institut Fourier},
title = {A.e. convergence of spectral sums on Lie groups},
url = {http://eudml.org/doc/10267},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Meaney, Christopher
AU - Müller, Detlef
AU - Prestini, Elena
TI - A.e. convergence of spectral sums on Lie groups
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 5
SP - 1509
EP - 1520
AB - Let $\mathcal{L}$ be a right-invariant sub-Laplacian on a connected Lie group $G,$ and let $S_Rf:= \int _0^R dE_\lambda f,\ R\ge 0,$ denote the associated “spherical partial sums,” where $\mathcal{L}=\int _0^\infty \lambda \, dE_\lambda $ is the spectral resolution of $\mathcal{L}.$ We prove that $S_Rf(x)$ converges a.e. to $f(x)$ as $R\rightarrow \infty $ under the assumption $\log (2+\mathcal{L})f\in L^2(G).$
LA - eng
KW - Rademacher-Menshov theorem; sub-Laplacian; spectral theory; sub-Laplacian spectral theory
UR - http://eudml.org/doc/10267
ER -

References

top
  1. G. Alexits, Convergence Problems of Orthogonal Series., 20 (1961), Pergamon Press, Oxford, New York Zbl0098.27403MR218827
  2. A. Carbery, F. Soria, Almost-Everywhere Convergence of Fourier Integrals for Functions in Sobolev Spaces, and an L 2 -Localisation Principle, Rev. Mat. Iberoamericana 4 (1988), 319-337 Zbl0692.42001MR1028744
  3. M. Christ, L p bounds for spectral multipliers on nilpotent groups., Trans. Amer. Math. Soc. 328 (1991), 73-81 Zbl0739.42010MR1104196
  4. L. Colzani, C. Meaney, E. Prestini, Almost everywhere convergence of inverse Fourier transforms., Proc. Amer. Math. Soc. 134 (2006), 1651-1660 Zbl1082.42006MR2204276
  5. G. B. Folland, E. M. Stein, Hardy Spaces on Homogeneous Groups, 28 (1982), Princeton University Press, Princeton, N.J. Zbl0508.42025MR657581
  6. A. Hulanicki, J. W. Jenkins, Almost everywhere summability on nilmanifolds, Trans. Amer. Math. Soc. 278 (1983), 703-715 Zbl0516.43010MR701519
  7. J. Ludwig, D. Müller, Sub-Laplacians of holomorphic L p -type on rank one A N -groups and related solvable groups, J. Funct. Anal. 170 (2000), 366-427 Zbl0957.22013MR1740657
  8. N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and Geometry on Groups, 100 (1992), Cambridge University Press, Cambridge Zbl0813.22003MR1218884
  9. A. Zygmund, Trigonometric Series, 1 and 2 (2002), Cambridge Mathematical Library. Cambridge University Press, Cambridge Zbl1084.42003MR1963498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.