A.e. convergence of spectral sums on Lie groups
Christopher Meaney[1]; Detlef Müller[2]; Elena Prestini[3]
- [1] Macquarie University Department of Mathematics North Ryde NSW 2109 (Australia)
- [2] C.A.-Universität Kiel Mathematisches Seminar Ludewig-Meyn-Str.4 D-24098 Kiel (Germany)
- [3] Università di Roma “Tor Vergata" Dipartimento di Matematica Via della Ricerca Scientifica 00133 Roma (Italie)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 5, page 1509-1520
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMeaney, Christopher, Müller, Detlef, and Prestini, Elena. "A.e. convergence of spectral sums on Lie groups." Annales de l’institut Fourier 57.5 (2007): 1509-1520. <http://eudml.org/doc/10267>.
@article{Meaney2007,
abstract = {Let $\mathcal\{L\}$ be a right-invariant sub-Laplacian on a connected Lie group $G,$ and let $S_Rf:= \int _0^R dE_\lambda f,\ R\ge 0,$ denote the associated “spherical partial sums,” where $\mathcal\{L\}=\int _0^\infty \lambda \, dE_\lambda $ is the spectral resolution of $\mathcal\{L\}.$ We prove that $S_Rf(x)$ converges a.e. to $f(x)$ as $R\rightarrow \infty $ under the assumption $\log (2+\mathcal\{L\})f\in L^2(G).$},
affiliation = {Macquarie University Department of Mathematics North Ryde NSW 2109 (Australia); C.A.-Universität Kiel Mathematisches Seminar Ludewig-Meyn-Str.4 D-24098 Kiel (Germany); Università di Roma “Tor Vergata" Dipartimento di Matematica Via della Ricerca Scientifica 00133 Roma (Italie)},
author = {Meaney, Christopher, Müller, Detlef, Prestini, Elena},
journal = {Annales de l’institut Fourier},
keywords = {Rademacher-Menshov theorem; sub-Laplacian; spectral theory; sub-Laplacian spectral theory},
language = {eng},
number = {5},
pages = {1509-1520},
publisher = {Association des Annales de l’institut Fourier},
title = {A.e. convergence of spectral sums on Lie groups},
url = {http://eudml.org/doc/10267},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Meaney, Christopher
AU - Müller, Detlef
AU - Prestini, Elena
TI - A.e. convergence of spectral sums on Lie groups
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 5
SP - 1509
EP - 1520
AB - Let $\mathcal{L}$ be a right-invariant sub-Laplacian on a connected Lie group $G,$ and let $S_Rf:= \int _0^R dE_\lambda f,\ R\ge 0,$ denote the associated “spherical partial sums,” where $\mathcal{L}=\int _0^\infty \lambda \, dE_\lambda $ is the spectral resolution of $\mathcal{L}.$ We prove that $S_Rf(x)$ converges a.e. to $f(x)$ as $R\rightarrow \infty $ under the assumption $\log (2+\mathcal{L})f\in L^2(G).$
LA - eng
KW - Rademacher-Menshov theorem; sub-Laplacian; spectral theory; sub-Laplacian spectral theory
UR - http://eudml.org/doc/10267
ER -
References
top- G. Alexits, Convergence Problems of Orthogonal Series., 20 (1961), Pergamon Press, Oxford, New York Zbl0098.27403MR218827
- A. Carbery, F. Soria, Almost-Everywhere Convergence of Fourier Integrals for Functions in Sobolev Spaces, and an -Localisation Principle, Rev. Mat. Iberoamericana 4 (1988), 319-337 Zbl0692.42001MR1028744
- M. Christ, bounds for spectral multipliers on nilpotent groups., Trans. Amer. Math. Soc. 328 (1991), 73-81 Zbl0739.42010MR1104196
- L. Colzani, C. Meaney, E. Prestini, Almost everywhere convergence of inverse Fourier transforms., Proc. Amer. Math. Soc. 134 (2006), 1651-1660 Zbl1082.42006MR2204276
- G. B. Folland, E. M. Stein, Hardy Spaces on Homogeneous Groups, 28 (1982), Princeton University Press, Princeton, N.J. Zbl0508.42025MR657581
- A. Hulanicki, J. W. Jenkins, Almost everywhere summability on nilmanifolds, Trans. Amer. Math. Soc. 278 (1983), 703-715 Zbl0516.43010MR701519
- J. Ludwig, D. Müller, Sub-Laplacians of holomorphic -type on rank one -groups and related solvable groups, J. Funct. Anal. 170 (2000), 366-427 Zbl0957.22013MR1740657
- N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and Geometry on Groups, 100 (1992), Cambridge University Press, Cambridge Zbl0813.22003MR1218884
- A. Zygmund, Trigonometric Series, 1 and 2 (2002), Cambridge Mathematical Library. Cambridge University Press, Cambridge Zbl1084.42003MR1963498
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.