Annihilators of minus class groups of imaginary abelian fields
Cornelius Greither[1]; Radan Kučera[2]
- [1] Universität der Bundeswehr München Fakultät für Informatik Institut für theoretische Informatik und Mathematik 85577 Neubiberg (Germany)
- [2] Masarykova univerzita Přírodovědecká fakulta Janáčkovo nám. 2a 602 00 Brno (Czech Republic)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 5, page 1623-1653
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- P. Cornacchia, C. Greither, Fitting ideals of class groups of real fields with prime power conductor, J. Number Theory 73 (1998), 459-471 Zbl0926.11085MR1658000
- H. Darmon, Thaine’s method for circular units and a conjecture of Gross, Canad. J. Math. 47 (1995), 302-317 Zbl0844.11071
- C. Greither, Über relativ-invariante Kreiseinheiten und Stickelberger-Elemente, Manuscripta Math. 80 (1993), 27-43 Zbl0801.11044MR1226595
- Cornelius Greither, Some cases of Brumer’s conjecture for abelian CM extensions of totally real fields, Math. Z. 233 (2000), 515-534 Zbl0965.11047
- Cornelius Greither, Radan Kučera, Annihilators for the class group of a cyclic field of prime power degree. II, Canad. J. Math 58 (2006), 580-599 Zbl1155.11054MR2223457
- A. Hayward, A class number formula for higher derivatives of abelian -functions, Compos. Math. 140 (2004), 99-129 Zbl1060.11075MR1984423
- I. Kaplansky, Commutative rings, (1994), Polygonal Publishing House, Washington, NJ Zbl0814.16032
- M. Kurihara, Iwasawa theory and Fitting ideals, J. Reine Angew. Math. 561 (2003), 39-86 Zbl1056.11063MR1998607
- Serge Lang, Cyclotomic fields I and II, 121 (1990), Springer-Verlag, New York Zbl0395.12005MR1029028
- W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980/81), 181-234 Zbl0465.12001MR595586
- Lawrence C. Washington, Introduction to cyclotomic fields, 83 (1982), Springer-Verlag, New York Zbl0484.12001MR718674