Contraction of excess fibres between the McKay correspondences in dimensions two and three

Samuel Boissière[1]; Alessandra Sarti[2]

  • [1] Université de Nice Sophia-Antipolis Laboratoire J.A.Dieudonné UMR CNRS 6621 Parc Valrose 06108 Nice (France)
  • [2] Johannes Gutenberg Universität Mainz Institut für Mathematik 55099 Mainz (Deutschland)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 6, page 1839-1861
  • ISSN: 0373-0956

Abstract

top
The quotient singularities of dimensions two and three obtained from polyhedral groups and the corresponding binary polyhedral groups admit natural resolutions of singularities as Hilbert schemes of regular orbits whose exceptional fibres over the origin reveal similar properties. We construct a morphism between these two resolutions, contracting exactly the excess part of the exceptional fibre. This construction is motivated by the study of some pencils of K3 surfaces appearing as minimal resolutions of quotients of nodal surfaces with high symmetries.

How to cite

top

Boissière, Samuel, and Sarti, Alessandra. "Contraction of excess fibres between the McKay correspondences in dimensions two and three." Annales de l’institut Fourier 57.6 (2007): 1839-1861. <http://eudml.org/doc/10279>.

@article{Boissière2007,
abstract = {The quotient singularities of dimensions two and three obtained from polyhedral groups and the corresponding binary polyhedral groups admit natural resolutions of singularities as Hilbert schemes of regular orbits whose exceptional fibres over the origin reveal similar properties. We construct a morphism between these two resolutions, contracting exactly the excess part of the exceptional fibre. This construction is motivated by the study of some pencils of K3 surfaces appearing as minimal resolutions of quotients of nodal surfaces with high symmetries.},
affiliation = {Université de Nice Sophia-Antipolis Laboratoire J.A.Dieudonné UMR CNRS 6621 Parc Valrose 06108 Nice (France); Johannes Gutenberg Universität Mainz Institut für Mathematik 55099 Mainz (Deutschland)},
author = {Boissière, Samuel, Sarti, Alessandra},
journal = {Annales de l’institut Fourier},
keywords = {Quotient singularities; McKay correspondence; Hilbert schemes; polyhedral groups; quotient singularities},
language = {eng},
number = {6},
pages = {1839-1861},
publisher = {Association des Annales de l’institut Fourier},
title = {Contraction of excess fibres between the McKay correspondences in dimensions two and three},
url = {http://eudml.org/doc/10279},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Boissière, Samuel
AU - Sarti, Alessandra
TI - Contraction of excess fibres between the McKay correspondences in dimensions two and three
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 6
SP - 1839
EP - 1861
AB - The quotient singularities of dimensions two and three obtained from polyhedral groups and the corresponding binary polyhedral groups admit natural resolutions of singularities as Hilbert schemes of regular orbits whose exceptional fibres over the origin reveal similar properties. We construct a morphism between these two resolutions, contracting exactly the excess part of the exceptional fibre. This construction is motivated by the study of some pencils of K3 surfaces appearing as minimal resolutions of quotients of nodal surfaces with high symmetries.
LA - eng
KW - Quotient singularities; McKay correspondence; Hilbert schemes; polyhedral groups; quotient singularities
UR - http://eudml.org/doc/10279
ER -

References

top
  1. M. F. Atiyah, I. G. Macdonald, Introduction to commutative algebra, (1969), Addison-Wesley Zbl0175.03601MR242802
  2. W. P. Barth, A. Sarti, Polyhedral Groups and Pencils of K3-Surfaces with Maximal Picard Number, Asian J. of Math. 7 (2003), 519-538 Zbl1063.14047MR2074889
  3. T. Bridgeland, A. King, M. Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), 535-554 Zbl0966.14028MR1824990
  4. W. Crawley-Boevey, On the exceptional fibres of Kleinian singularities, Amer. J. Math. 122 (2000), 1027-1037 Zbl1001.14001MR1781930
  5. J. Fogarty, Algebraic families on an algebraic surface, Amer. J. Math. 90 (1968), 511-521 Zbl0176.18401MR237496
  6. Y. Gomi, I. Nakamura, K.-I. Shinoda, Hilbert schemes of G -orbits in dimension three, Asian J. Math. 4 (2000), 51-70 Zbl0981.14002MR1802912
  7. Y. Gomi, I. Nakamura, K.-I. Shinoda, Coinvariant algebras of finite subgroups of SL ( 3 , ) , Can. J. Math. 56 (2002), 495-528 Zbl1066.14053MR2057284
  8. G. Gonzalez-Sprinberg, J.-L. Verdier, Construction géométrique de la correspondance de McKay, Ann. scient. Éc. Norm. Sup. 16 (1983), 409-449 Zbl0538.14033MR740077
  9. R. Hartshorne, Algebraic geometry, (1977), Springer Zbl0367.14001MR463157
  10. D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, (1997), Vieweg Zbl0872.14002MR1450870
  11. Y. Ito, H. Nakajima, McKay correspondence and Hilbert schemes in dimension 3 , Topology 39 (2000), 1155-1191 Zbl0995.14001MR1783852
  12. Y. Ito, I. Nakamura, McKay correspondence and Hilbert schemes, Proc. Japan. Acad. 92 (1996), 135-138 Zbl0881.14002MR1420598
  13. Y. Ito, I. Nakamura, Hilbert schemes and simple singularities, New trends in algebraic geometry (1999), 151-233, Camb. Univ. Press Zbl0954.14001MR1714824
  14. M. Kapranov, E. Vasserot, Kleinian singularities, derived categories and Hall algebras, Math. Ann. 316 (2000), 565-576 Zbl0997.14001MR1752785
  15. J. McKay, Graphs, singularities and finite groups, Proc. of Symp. in Pure Math. 37 (1980), 183-186 Zbl0451.05026MR604577
  16. I. Nakamura, Hilbert scheme of abelian group orbits, J. Alg. Geom. 10 (2001), 757-779 Zbl1104.14003MR1838978
  17. A. Sarti, Pencils of Symmetric Surfaces in 3 , J. of Algebra 246 (2001), 429-452 Zbl1064.14038MR1872630
  18. S. Térouanne, Correspondance de McKay : variations en dimension trois, (2004) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.