On total reality of meromorphic functions
Alex Degtyarev[1]; Torsten Ekedahl[2]; Ilia Itenberg[3]; Boris Shapiro[2]; Michael Shapiro[4]
- [1] Bilkent University Department of Mathematics Bilkent, Ankara 06533 (Turkey)
- [2] Stockholm University Department of Mathematics SE-106 91 Stockholm (Sweden)
- [3] Université Louis Pasteur IRMA 7 rue René Descartes 67084 Strasbourg cedex (France)
- [4] Michigan State University Department of Mathematics East Lansing MI 48824-1027 (USA)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 6, page 2015-2030
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDegtyarev, Alex, et al. "On total reality of meromorphic functions." Annales de l’institut Fourier 57.6 (2007): 2015-2030. <http://eudml.org/doc/10285>.
@article{Degtyarev2007,
abstract = {We show that, if a meromorphic function of degree at most four on a real algebraic curve of an arbitrary genus has only real critical points, then it is conjugate to a real meromorphic function by a suitable projective automorphism of the image.},
affiliation = {Bilkent University Department of Mathematics Bilkent, Ankara 06533 (Turkey); Stockholm University Department of Mathematics SE-106 91 Stockholm (Sweden); Université Louis Pasteur IRMA 7 rue René Descartes 67084 Strasbourg cedex (France); Stockholm University Department of Mathematics SE-106 91 Stockholm (Sweden); Michigan State University Department of Mathematics East Lansing MI 48824-1027 (USA)},
author = {Degtyarev, Alex, Ekedahl, Torsten, Itenberg, Ilia, Shapiro, Boris, Shapiro, Michael},
journal = {Annales de l’institut Fourier},
keywords = {Total reality; meromorphic function; real curves on ellipsoid; K3-surface; total reality; real curves on ellipsoid, -surface},
language = {eng},
number = {6},
pages = {2015-2030},
publisher = {Association des Annales de l’institut Fourier},
title = {On total reality of meromorphic functions},
url = {http://eudml.org/doc/10285},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Degtyarev, Alex
AU - Ekedahl, Torsten
AU - Itenberg, Ilia
AU - Shapiro, Boris
AU - Shapiro, Michael
TI - On total reality of meromorphic functions
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 6
SP - 2015
EP - 2030
AB - We show that, if a meromorphic function of degree at most four on a real algebraic curve of an arbitrary genus has only real critical points, then it is conjugate to a real meromorphic function by a suitable projective automorphism of the image.
LA - eng
KW - Total reality; meromorphic function; real curves on ellipsoid; K3-surface; total reality; real curves on ellipsoid, -surface
UR - http://eudml.org/doc/10285
ER -
References
top- W. Barth, C. Peters, A. Van de Ven, Compact Complex Surfaces, (1984), Springer-Verlag Zbl0718.14023MR749574
- N. Bourbaki, Groupes et algèbres de Lie, 1337 (1968), Hermann, Paris Zbl0186.33001MR240238
- T. Ekedahl, B. Shapiro, M. Shapiro, First steps towards total reality of meromorphic functions Zbl1126.14064
- A. Eremenko, A. Gabrielov, Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry, Ann. of Math.(2) 155 (2002), 105-129 Zbl0997.14015MR1888795
- A. Eremenko, A. Gabrielov, M. Shapiro, A. Vainshtein, Rational functions and real Schubert calculus Zbl1110.14052
- D. Gudkov, E. Shustin, Classification of nonsingular eighth-order curves on an ellipsoid. (Russian), Methods of the qualitative theory of differential equations (1980), 104-107 MR726230
- V. Kharlamov, F. Sottile, Maximally inflected real rational curves, Mosc. Math. J. 3 (2003), 947-987, 1199–1200 Zbl1052.14070MR2078569
- E. Mukhin, V. Tarasov, A. Varchenko, The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz Zbl1213.14101
- V. V. Nikulin, Integer quadratic forms and some of their geometrical applications, Izv. Akad. Nauk SSSR, Ser. Mat 43 (1979), 111-177 Zbl0408.10011MR525944
- B. Osserman, Linear series over real and -adic fields, Proc. AMS 134 (2005), 989-993 Zbl1083.14034MR2196029
- J. Ruffo, Y. Sivan, E. Soprunova, F. Sottile, Experimentation and conjectures in the real Schubert calculus for flag manifolds Zbl1111.14049
- F. Sottile
- F. Sottile, Enumerative geometry for real varieties, Proc. of Symp. Pur. Math. 62 (1997), 435-447 Zbl0890.14030MR1492531
- F. Sottile, Enumerative geometry for the real Grassmannian of lines in projective space, Duke Math J. 87 (1997), 59-85 Zbl0986.14033MR1440063
- F. Sottile, The special Schubert calculus is real, Electronic Res. Ann. of the AMS 5 (1999), 35-39 Zbl0921.14037MR1679451
- F. Sottile, Real Schubert calculus: polynomial systems and a conjecture of Shapiro and Shapiro, Experiment. Math. 9 (2000), 161-182 Zbl0997.14016MR1780204
- J. Verschelde, Numerical evidence for a conjecture in real algebraic geometry, Experiment. Math. 9 (2000), 183-196 Zbl1054.14080MR1780205
- R. J. Walker, Algebraic Curves, 13 (1950), PressPrinceton UniversityP. U., Princeton, N. J. Zbl0039.37701MR33083
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.