Riemann sums over polytopes
Victor Guillemin[1]; Shlomo Sternberg[2]
- [1] MIT Department of Mathematics Cambridge, MA 02139 (USA)
- [2] Harvard University Department of Mathematics Cambridge, MA 02140 (USA)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 7, page 2183-2195
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGuillemin, Victor, and Sternberg, Shlomo. "Riemann sums over polytopes." Annales de l’institut Fourier 57.7 (2007): 2183-2195. <http://eudml.org/doc/10294>.
@article{Guillemin2007,
abstract = {It is well-known that the $N$-th Riemann sum of a compactly supported function on the real line converges to the Riemann integral at a much faster rate than the standard $O(1/N)$ rate of convergence if the sum is over the lattice, $Z/N$. In this paper we prove an n-dimensional version of this result for Riemann sums over polytopes.},
affiliation = {MIT Department of Mathematics Cambridge, MA 02139 (USA); Harvard University Department of Mathematics Cambridge, MA 02140 (USA)},
author = {Guillemin, Victor, Sternberg, Shlomo},
journal = {Annales de l’institut Fourier},
keywords = {Riemann sums; Euler-Maclaurin formula for polytopes; Ehrhart’s theorem; Ehrhart's theorem},
language = {eng},
number = {7},
pages = {2183-2195},
publisher = {Association des Annales de l’institut Fourier},
title = {Riemann sums over polytopes},
url = {http://eudml.org/doc/10294},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Guillemin, Victor
AU - Sternberg, Shlomo
TI - Riemann sums over polytopes
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 7
SP - 2183
EP - 2195
AB - It is well-known that the $N$-th Riemann sum of a compactly supported function on the real line converges to the Riemann integral at a much faster rate than the standard $O(1/N)$ rate of convergence if the sum is over the lattice, $Z/N$. In this paper we prove an n-dimensional version of this result for Riemann sums over polytopes.
LA - eng
KW - Riemann sums; Euler-Maclaurin formula for polytopes; Ehrhart’s theorem; Ehrhart's theorem
UR - http://eudml.org/doc/10294
ER -
References
top- M. Brion, M. Vergne, Lattice points in simple polytopes, Jour. Amer. Math. Soc. 10 (1997), 371-392 Zbl0871.52009MR1415319
- S. Cappell, J. Shaneson, Euler-Maclaurin expansions for lattices above dimension one, C. R. Acad. Sci. Paris Ser. I Math. 321 (1995), 885-890 Zbl0838.52018MR1355847
- V. I. Danilov, The geometry of toric varieties, Russ. Math. Surv. 33 (1978), 97-154 Zbl0425.14013MR495499
- V. Guillemin, Riemann-Roch for toric orbifolds, J. Differential Geom. 45 (1997), 53-73 Zbl0932.37039MR1443331
- V. Guillemin, Shlomo Sternberg, Jonathan Weitsman, The Ehrhart function for symbols Zbl1132.52019
- V. Guillemin, D. W. Stroock, Some Riemann sums are better than others Zbl1173.26307
- J. M. Kantor, A. G. Khovanskii, Une application du théorème de Riemann-Roch combinatoire au polynôme d’Ehrhart des polytopes entiers de , C. R. Acad. Sci. Paris Ser. I Math 317 (1993), 501-507 Zbl0791.52012
- Y. Karshon, S. Sternberg, J. Weitsman, Euler-MacLaurin with remainder for a simple integral polytope, Duke Mathematical Journal 130 (2005), 401-434 Zbl1087.65002MR2184566
- A. G Khovanskii, A. V. Pukhlikov, The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes, Algebra and Analysis 4 (1992), 188-216 Zbl0798.52010MR1190788
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.