Riemann sums over polytopes

Victor Guillemin[1]; Shlomo Sternberg[2]

  • [1] MIT Department of Mathematics Cambridge, MA 02139 (USA)
  • [2] Harvard University Department of Mathematics Cambridge, MA 02140 (USA)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 7, page 2183-2195
  • ISSN: 0373-0956

Abstract

top
It is well-known that the N -th Riemann sum of a compactly supported function on the real line converges to the Riemann integral at a much faster rate than the standard O ( 1 / N ) rate of convergence if the sum is over the lattice, Z / N . In this paper we prove an n-dimensional version of this result for Riemann sums over polytopes.

How to cite

top

Guillemin, Victor, and Sternberg, Shlomo. "Riemann sums over polytopes." Annales de l’institut Fourier 57.7 (2007): 2183-2195. <http://eudml.org/doc/10294>.

@article{Guillemin2007,
abstract = {It is well-known that the $N$-th Riemann sum of a compactly supported function on the real line converges to the Riemann integral at a much faster rate than the standard $O(1/N)$ rate of convergence if the sum is over the lattice, $Z/N$. In this paper we prove an n-dimensional version of this result for Riemann sums over polytopes.},
affiliation = {MIT Department of Mathematics Cambridge, MA 02139 (USA); Harvard University Department of Mathematics Cambridge, MA 02140 (USA)},
author = {Guillemin, Victor, Sternberg, Shlomo},
journal = {Annales de l’institut Fourier},
keywords = {Riemann sums; Euler-Maclaurin formula for polytopes; Ehrhart’s theorem; Ehrhart's theorem},
language = {eng},
number = {7},
pages = {2183-2195},
publisher = {Association des Annales de l’institut Fourier},
title = {Riemann sums over polytopes},
url = {http://eudml.org/doc/10294},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Guillemin, Victor
AU - Sternberg, Shlomo
TI - Riemann sums over polytopes
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 7
SP - 2183
EP - 2195
AB - It is well-known that the $N$-th Riemann sum of a compactly supported function on the real line converges to the Riemann integral at a much faster rate than the standard $O(1/N)$ rate of convergence if the sum is over the lattice, $Z/N$. In this paper we prove an n-dimensional version of this result for Riemann sums over polytopes.
LA - eng
KW - Riemann sums; Euler-Maclaurin formula for polytopes; Ehrhart’s theorem; Ehrhart's theorem
UR - http://eudml.org/doc/10294
ER -

References

top
  1. M. Brion, M. Vergne, Lattice points in simple polytopes, Jour. Amer. Math. Soc. 10 (1997), 371-392 Zbl0871.52009MR1415319
  2. S. Cappell, J. Shaneson, Euler-Maclaurin expansions for lattices above dimension one, C. R. Acad. Sci. Paris Ser. I Math. 321 (1995), 885-890 Zbl0838.52018MR1355847
  3. V. I. Danilov, The geometry of toric varieties, Russ. Math. Surv. 33 (1978), 97-154 Zbl0425.14013MR495499
  4. V. Guillemin, Riemann-Roch for toric orbifolds, J. Differential Geom. 45 (1997), 53-73 Zbl0932.37039MR1443331
  5. V. Guillemin, Shlomo Sternberg, Jonathan Weitsman, The Ehrhart function for symbols Zbl1132.52019
  6. V. Guillemin, D. W. Stroock, Some Riemann sums are better than others Zbl1173.26307
  7. J. M. Kantor, A. G. Khovanskii, Une application du théorème de Riemann-Roch combinatoire au polynôme d’Ehrhart des polytopes entiers de R d , C. R. Acad. Sci. Paris Ser. I Math 317 (1993), 501-507 Zbl0791.52012
  8. Y. Karshon, S. Sternberg, J. Weitsman, Euler-MacLaurin with remainder for a simple integral polytope, Duke Mathematical Journal 130 (2005), 401-434 Zbl1087.65002MR2184566
  9. A. G Khovanskii, A. V. Pukhlikov, The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes, Algebra and Analysis 4 (1992), 188-216 Zbl0798.52010MR1190788

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.