Comparison of the refined analytic and the Burghelea-Haller torsions

Maxim Braverman[1]; Thomas Kappeler[2]

  • [1] Northeastern University Department of Mathematics Northeastern University Boston, MA 02115 (USA)
  • [2] Universität Zürich Institut für Mathematik Winterthurerstrasse 190 8057 Zürich (Switzerland)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 7, page 2361-2387
  • ISSN: 0373-0956

Abstract

top
The refined analytic torsion associated to a flat vector bundle over a closed odd-dimensional manifold canonically defines a quadratic form τ on the determinant line of the cohomology. Both τ and the Burghelea-Haller torsion are refinements of the Ray-Singer torsion. We show that whenever the Burghelea-Haller torsion is defined it is equal to ± τ . As an application we obtain new results about the Burghelea-Haller torsion. In particular, we prove a weak version of the Burghelea-Haller conjecture relating their torsion with the square of the Farber-Turaev combinatorial torsion.

How to cite

top

Braverman, Maxim, and Kappeler, Thomas. "Comparison of the refined analytic and the Burghelea-Haller torsions." Annales de l’institut Fourier 57.7 (2007): 2361-2387. <http://eudml.org/doc/10300>.

@article{Braverman2007,
abstract = {The refined analytic torsion associated to a flat vector bundle over a closed odd-dimensional manifold canonically defines a quadratic form $\tau $ on the determinant line of the cohomology. Both $\tau $ and the Burghelea-Haller torsion are refinements of the Ray-Singer torsion. We show that whenever the Burghelea-Haller torsion is defined it is equal to $\pm \tau $. As an application we obtain new results about the Burghelea-Haller torsion. In particular, we prove a weak version of the Burghelea-Haller conjecture relating their torsion with the square of the Farber-Turaev combinatorial torsion.},
affiliation = {Northeastern University Department of Mathematics Northeastern University Boston, MA 02115 (USA); Universität Zürich Institut für Mathematik Winterthurerstrasse 190 8057 Zürich (Switzerland)},
author = {Braverman, Maxim, Kappeler, Thomas},
journal = {Annales de l’institut Fourier},
keywords = {Determinant line; analytic torsion; Ray-Singer torsion; eta-invariant; Turaev torsion and Farber-Turaev torsion; determinant line; Turaev torsion; Farber-Turaev torsion},
language = {eng},
number = {7},
pages = {2361-2387},
publisher = {Association des Annales de l’institut Fourier},
title = {Comparison of the refined analytic and the Burghelea-Haller torsions},
url = {http://eudml.org/doc/10300},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Braverman, Maxim
AU - Kappeler, Thomas
TI - Comparison of the refined analytic and the Burghelea-Haller torsions
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 7
SP - 2361
EP - 2387
AB - The refined analytic torsion associated to a flat vector bundle over a closed odd-dimensional manifold canonically defines a quadratic form $\tau $ on the determinant line of the cohomology. Both $\tau $ and the Burghelea-Haller torsion are refinements of the Ray-Singer torsion. We show that whenever the Burghelea-Haller torsion is defined it is equal to $\pm \tau $. As an application we obtain new results about the Burghelea-Haller torsion. In particular, we prove a weak version of the Burghelea-Haller conjecture relating their torsion with the square of the Farber-Turaev combinatorial torsion.
LA - eng
KW - Determinant line; analytic torsion; Ray-Singer torsion; eta-invariant; Turaev torsion and Farber-Turaev torsion; determinant line; Turaev torsion; Farber-Turaev torsion
UR - http://eudml.org/doc/10300
ER -

References

top
  1. Nicole Berline, Ezra Getzler, Michèle Vergne, Heat kernels and Dirac operators, (2004), Springer-Verlag, Berlin Zbl1037.58015MR2273508
  2. Jean-Michel Bismut, Weiping Zhang, An extension of a theorem by Cheeger and Müller, Astérisque (1992) Zbl0781.58039MR1185803
  3. Maxim Braverman, Thomas Kappeler, A canonical quadratic form on the determinant line of a flat vector bundle Zbl1146.58023
  4. Maxim Braverman, Thomas Kappeler, Refined Analytic Torsion 
  5. Maxim Braverman, Thomas Kappeler, A refinement of the Ray-Singer torsion, C. R. Math. Acad. Sci. Paris 341 (2005), 497-502 Zbl1086.58015MR2180817
  6. Maxim Braverman, Thomas Kappeler, Ray-Singer type theorem for the refined analytic torsion, J. Funct. Anal. 243 (2007), 232-256 Zbl1122.58018MR2291437
  7. Maxim Braverman, Thomas Kappeler, Refined analytic torsion as an element of the determinant line, Geom. Topol. 11 (2007), 139-213 Zbl1135.58014MR2302591
  8. D. Burghelea, Removing metric anomalies from Ray-Singer torsion, Lett. Math. Phys. 47 (1999), 149-158 Zbl0946.58026MR1682302
  9. D. Burghelea, L. Friedlander, T. Kappeler, Asymptotic expansion of the Witten deformation of the analytic torsion, J. Funct. Anal. 137 (1996), 320-363 Zbl0858.57029MR1387514
  10. Dan Burghelea, Stefan Haller, Torsion, as a function on the space of representations Zbl1147.58035
  11. Dan Burghelea, Stefan Haller, Euler structures, the variety of representations and the Milnor-Turaev torsion, Geom. Topol. 10 (2006), 1185-1238 (electronic) Zbl1204.58027MR2255496
  12. Dan Burghelea, Stefan Haller, Complex-valued Ray-Singer torsion, J. Funct. Anal. 248 (2007), 27-78 Zbl1131.58020MR2329682
  13. Jeff Cheeger, Analytic torsion and the heat equation, Ann. of Math. (2) 109 (1979), 259-322 Zbl0412.58026MR528965
  14. M. Farber, Absolute torsion and eta-invariant, Math. Z. 234 (2000), 339-349 Zbl0955.57022MR1765885
  15. Michael Farber, Vladimir Turaev, Absolute torsion, Tel Aviv Topology Conference: Rothenberg Festschrift (1998) 231 (1999), 73-85, Amer. Math. Soc., Providence, RI Zbl0934.57030MR1705570
  16. Michael Farber, Vladimir Turaev, Poincaré-Reidemeister metric, Euler structures, and torsion, J. Reine Angew. Math. 520 (2000), 195-225 Zbl0938.57020MR1748274
  17. Peter B. Gilkey, The eta invariant and secondary characteristic classes of locally flat bundles, Algebraic and differential topology-global differential geometry 70 (1984), 49-87, Teubner, Leipzig Zbl0584.58040MR792686
  18. R.-T. Huang, Refined analytic torsion: comparison theorems and examples Zbl1157.58012
  19. X. Ma, W. Zhang, η -invariant and flat vector bundles II Zbl1147.58024MR2313340
  20. Varghese Mathai, Daniel Quillen, Superconnections, Thom classes, and equivariant differential forms, Topology 25 (1986), 85-110 Zbl0592.55015MR836726
  21. Werner Müller, Analytic torsion and R -torsion of Riemannian manifolds, Adv. in Math. 28 (1978), 233-305 Zbl0395.57011MR498252
  22. Werner Müller, Analytic torsion and R -torsion for unimodular representations, J. Amer. Math. Soc. 6 (1993), 721-753 Zbl0789.58071MR1189689
  23. D. B. Ray, I. M. Singer, R -torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971), 145-210 Zbl0239.58014MR295381
  24. V. G. Turaev, Reidemeister torsion in knot theory, Russian Math. Survey 41 (1986), 119-182 Zbl0602.57005MR832411
  25. V. G. Turaev, Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Math. USSR Izvestia 34 (1990), 627-662 Zbl0692.57015MR1013714
  26. Vladimir Turaev, Introduction to combinatorial torsions, (2001), Birkhäuser Verlag, Basel Zbl0970.57001MR1809561

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.