Comparison of the refined analytic and the Burghelea-Haller torsions
Maxim Braverman[1]; Thomas Kappeler[2]
- [1] Northeastern University Department of Mathematics Northeastern University Boston, MA 02115 (USA)
- [2] Universität Zürich Institut für Mathematik Winterthurerstrasse 190 8057 Zürich (Switzerland)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 7, page 2361-2387
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBraverman, Maxim, and Kappeler, Thomas. "Comparison of the refined analytic and the Burghelea-Haller torsions." Annales de l’institut Fourier 57.7 (2007): 2361-2387. <http://eudml.org/doc/10300>.
@article{Braverman2007,
abstract = {The refined analytic torsion associated to a flat vector bundle over a closed odd-dimensional manifold canonically defines a quadratic form $\tau $ on the determinant line of the cohomology. Both $\tau $ and the Burghelea-Haller torsion are refinements of the Ray-Singer torsion. We show that whenever the Burghelea-Haller torsion is defined it is equal to $\pm \tau $. As an application we obtain new results about the Burghelea-Haller torsion. In particular, we prove a weak version of the Burghelea-Haller conjecture relating their torsion with the square of the Farber-Turaev combinatorial torsion.},
affiliation = {Northeastern University Department of Mathematics Northeastern University Boston, MA 02115 (USA); Universität Zürich Institut für Mathematik Winterthurerstrasse 190 8057 Zürich (Switzerland)},
author = {Braverman, Maxim, Kappeler, Thomas},
journal = {Annales de l’institut Fourier},
keywords = {Determinant line; analytic torsion; Ray-Singer torsion; eta-invariant; Turaev torsion and Farber-Turaev torsion; determinant line; Turaev torsion; Farber-Turaev torsion},
language = {eng},
number = {7},
pages = {2361-2387},
publisher = {Association des Annales de l’institut Fourier},
title = {Comparison of the refined analytic and the Burghelea-Haller torsions},
url = {http://eudml.org/doc/10300},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Braverman, Maxim
AU - Kappeler, Thomas
TI - Comparison of the refined analytic and the Burghelea-Haller torsions
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 7
SP - 2361
EP - 2387
AB - The refined analytic torsion associated to a flat vector bundle over a closed odd-dimensional manifold canonically defines a quadratic form $\tau $ on the determinant line of the cohomology. Both $\tau $ and the Burghelea-Haller torsion are refinements of the Ray-Singer torsion. We show that whenever the Burghelea-Haller torsion is defined it is equal to $\pm \tau $. As an application we obtain new results about the Burghelea-Haller torsion. In particular, we prove a weak version of the Burghelea-Haller conjecture relating their torsion with the square of the Farber-Turaev combinatorial torsion.
LA - eng
KW - Determinant line; analytic torsion; Ray-Singer torsion; eta-invariant; Turaev torsion and Farber-Turaev torsion; determinant line; Turaev torsion; Farber-Turaev torsion
UR - http://eudml.org/doc/10300
ER -
References
top- Nicole Berline, Ezra Getzler, Michèle Vergne, Heat kernels and Dirac operators, (2004), Springer-Verlag, Berlin Zbl1037.58015MR2273508
- Jean-Michel Bismut, Weiping Zhang, An extension of a theorem by Cheeger and Müller, Astérisque (1992) Zbl0781.58039MR1185803
- Maxim Braverman, Thomas Kappeler, A canonical quadratic form on the determinant line of a flat vector bundle Zbl1146.58023
- Maxim Braverman, Thomas Kappeler, Refined Analytic Torsion
- Maxim Braverman, Thomas Kappeler, A refinement of the Ray-Singer torsion, C. R. Math. Acad. Sci. Paris 341 (2005), 497-502 Zbl1086.58015MR2180817
- Maxim Braverman, Thomas Kappeler, Ray-Singer type theorem for the refined analytic torsion, J. Funct. Anal. 243 (2007), 232-256 Zbl1122.58018MR2291437
- Maxim Braverman, Thomas Kappeler, Refined analytic torsion as an element of the determinant line, Geom. Topol. 11 (2007), 139-213 Zbl1135.58014MR2302591
- D. Burghelea, Removing metric anomalies from Ray-Singer torsion, Lett. Math. Phys. 47 (1999), 149-158 Zbl0946.58026MR1682302
- D. Burghelea, L. Friedlander, T. Kappeler, Asymptotic expansion of the Witten deformation of the analytic torsion, J. Funct. Anal. 137 (1996), 320-363 Zbl0858.57029MR1387514
- Dan Burghelea, Stefan Haller, Torsion, as a function on the space of representations Zbl1147.58035
- Dan Burghelea, Stefan Haller, Euler structures, the variety of representations and the Milnor-Turaev torsion, Geom. Topol. 10 (2006), 1185-1238 (electronic) Zbl1204.58027MR2255496
- Dan Burghelea, Stefan Haller, Complex-valued Ray-Singer torsion, J. Funct. Anal. 248 (2007), 27-78 Zbl1131.58020MR2329682
- Jeff Cheeger, Analytic torsion and the heat equation, Ann. of Math. (2) 109 (1979), 259-322 Zbl0412.58026MR528965
- M. Farber, Absolute torsion and eta-invariant, Math. Z. 234 (2000), 339-349 Zbl0955.57022MR1765885
- Michael Farber, Vladimir Turaev, Absolute torsion, Tel Aviv Topology Conference: Rothenberg Festschrift (1998) 231 (1999), 73-85, Amer. Math. Soc., Providence, RI Zbl0934.57030MR1705570
- Michael Farber, Vladimir Turaev, Poincaré-Reidemeister metric, Euler structures, and torsion, J. Reine Angew. Math. 520 (2000), 195-225 Zbl0938.57020MR1748274
- Peter B. Gilkey, The eta invariant and secondary characteristic classes of locally flat bundles, Algebraic and differential topology-global differential geometry 70 (1984), 49-87, Teubner, Leipzig Zbl0584.58040MR792686
- R.-T. Huang, Refined analytic torsion: comparison theorems and examples Zbl1157.58012
- X. Ma, W. Zhang, -invariant and flat vector bundles II Zbl1147.58024MR2313340
- Varghese Mathai, Daniel Quillen, Superconnections, Thom classes, and equivariant differential forms, Topology 25 (1986), 85-110 Zbl0592.55015MR836726
- Werner Müller, Analytic torsion and -torsion of Riemannian manifolds, Adv. in Math. 28 (1978), 233-305 Zbl0395.57011MR498252
- Werner Müller, Analytic torsion and -torsion for unimodular representations, J. Amer. Math. Soc. 6 (1993), 721-753 Zbl0789.58071MR1189689
- D. B. Ray, I. M. Singer, -torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971), 145-210 Zbl0239.58014MR295381
- V. G. Turaev, Reidemeister torsion in knot theory, Russian Math. Survey 41 (1986), 119-182 Zbl0602.57005MR832411
- V. G. Turaev, Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Math. USSR Izvestia 34 (1990), 627-662 Zbl0692.57015MR1013714
- Vladimir Turaev, Introduction to combinatorial torsions, (2001), Birkhäuser Verlag, Basel Zbl0970.57001MR1809561
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.