Raabe’s formula for p -adic gamma and zeta functions

Henri Cohen[1]; Eduardo Friedman[2]

  • [1] Université Bordeaux I Institut de Mathématiques U.M.R. 5251 du C.N.R.S. 351 Cours de la Libération, 33405 Talence Cedex (France)
  • [2] Universidad de Chile Facultad de Ciencias Departamento de Matemática Casilla 653 Santiago (Chile)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 1, page 363-376
  • ISSN: 0373-0956

Abstract

top
The classical Raabe formula computes a definite integral of the logarithm of Euler’s Γ -function. We compute p -adic integrals of the p -adic log Γ -functions, both Diamond’s and Morita’s, and show that each of these functions is uniquely characterized by its difference equation and p -adic Raabe formula. We also prove a Raabe-type formula for p -adic Hurwitz zeta functions.

How to cite

top

Cohen, Henri, and Friedman, Eduardo. "Raabe’s formula for $p$-adic gamma and zeta functions." Annales de l’institut Fourier 58.1 (2008): 363-376. <http://eudml.org/doc/10315>.

@article{Cohen2008,
abstract = {The classical Raabe formula computes a definite integral of the logarithm of Euler’s $\Gamma $-function. We compute $p$-adic integrals of the $p$-adic $\log \Gamma $-functions, both Diamond’s and Morita’s, and show that each of these functions is uniquely characterized by its difference equation and $p$-adic Raabe formula. We also prove a Raabe-type formula for $p$-adic Hurwitz zeta functions.},
affiliation = {Université Bordeaux I Institut de Mathématiques U.M.R. 5251 du C.N.R.S. 351 Cours de la Libération, 33405 Talence Cedex (France); Universidad de Chile Facultad de Ciencias Departamento de Matemática Casilla 653 Santiago (Chile)},
author = {Cohen, Henri, Friedman, Eduardo},
journal = {Annales de l’institut Fourier},
keywords = {$p$-adic gamma function; $p$-adic zeta function; Raabe’s formula; -adic gamma function; -adic zeta function; Raabe's formula},
language = {eng},
number = {1},
pages = {363-376},
publisher = {Association des Annales de l’institut Fourier},
title = {Raabe’s formula for $p$-adic gamma and zeta functions},
url = {http://eudml.org/doc/10315},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Cohen, Henri
AU - Friedman, Eduardo
TI - Raabe’s formula for $p$-adic gamma and zeta functions
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 1
SP - 363
EP - 376
AB - The classical Raabe formula computes a definite integral of the logarithm of Euler’s $\Gamma $-function. We compute $p$-adic integrals of the $p$-adic $\log \Gamma $-functions, both Diamond’s and Morita’s, and show that each of these functions is uniquely characterized by its difference equation and $p$-adic Raabe formula. We also prove a Raabe-type formula for $p$-adic Hurwitz zeta functions.
LA - eng
KW - $p$-adic gamma function; $p$-adic zeta function; Raabe’s formula; -adic gamma function; -adic zeta function; Raabe's formula
UR - http://eudml.org/doc/10315
ER -

References

top
  1. G. Andrews, R. Askey, R. Roy, Special Functions, (2000), Cambridge University Press, Cambridge Zbl1075.33500MR1688958
  2. J. Diamond, The p -adic log gamma function and p -adic Euler constants, Trans. Amer. Math. Soc. 233 (1977), 321-337 Zbl0382.12008MR498503
  3. E. Friedman, S. N. M. Ruijsenaars, Shintani-Barnes zeta and gamma functions, Adv. in Math. 187 (2004), 362-395 Zbl1112.11042MR2078341
  4. Y. Morita, A p -adic analogue of the Γ -function, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), 255-266 Zbl0308.12003MR424762
  5. Y. Morita, On the Hurwitz-Lerch L -functions, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 29-43 Zbl0356.12019MR441924
  6. N. Nielsen, Handbuch der Theorie der Gammafunktion, (1965), Chelsea, New York 
  7. A. Robert, A Course in p -adic Analysis, (2000), Springer-Verlag, Berlin Zbl0947.11035MR1760253
  8. W. H. Schikhof, An Introduction to Ultrametric Calculus, (1984), Cambridge, Cambridge University Press Zbl0553.26006MR791759
  9. L. Washington, A note on p -adic L -functions, J. Number Theory 8 (1976), 245-250 Zbl0329.12017MR406982
  10. L. Washington, Introduction to Cyclotomic Fields, (1982), Springer-Verlag, Berlin Zbl0484.12001MR718674

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.