Raabe’s formula for -adic gamma and zeta functions
Henri Cohen[1]; Eduardo Friedman[2]
- [1] Université Bordeaux I Institut de Mathématiques U.M.R. 5251 du C.N.R.S. 351 Cours de la Libération, 33405 Talence Cedex (France)
- [2] Universidad de Chile Facultad de Ciencias Departamento de Matemática Casilla 653 Santiago (Chile)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 1, page 363-376
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- G. Andrews, R. Askey, R. Roy, Special Functions, (2000), Cambridge University Press, Cambridge Zbl1075.33500MR1688958
- J. Diamond, The -adic log gamma function and -adic Euler constants, Trans. Amer. Math. Soc. 233 (1977), 321-337 Zbl0382.12008MR498503
- E. Friedman, S. N. M. Ruijsenaars, Shintani-Barnes zeta and gamma functions, Adv. in Math. 187 (2004), 362-395 Zbl1112.11042MR2078341
- Y. Morita, A -adic analogue of the -function, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), 255-266 Zbl0308.12003MR424762
- Y. Morita, On the Hurwitz-Lerch -functions, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 29-43 Zbl0356.12019MR441924
- N. Nielsen, Handbuch der Theorie der Gammafunktion, (1965), Chelsea, New York
- A. Robert, A Course in -adic Analysis, (2000), Springer-Verlag, Berlin Zbl0947.11035MR1760253
- W. H. Schikhof, An Introduction to Ultrametric Calculus, (1984), Cambridge, Cambridge University Press Zbl0553.26006MR791759
- L. Washington, A note on -adic -functions, J. Number Theory 8 (1976), 245-250 Zbl0329.12017MR406982
- L. Washington, Introduction to Cyclotomic Fields, (1982), Springer-Verlag, Berlin Zbl0484.12001MR718674