The Denjoy-Clarkson property with respect to Hausdorff measures for the gradient mapping of functions of several variables

Miroslav Zelený[1]

  • [1] Charles University Faculty of Mathematics and Physics Sokolovská 83 186 75 Praha 8 (Czech Republic)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 2, page 405-428
  • ISSN: 0373-0956

Abstract

top
We construct a differentiable function f : R n R ( n 2 ) such that the set ( f ) - 1 ( B ( 0 , 1 ) ) is a nonempty set of Hausdorff dimension 1 . This answers a question posed by Z. Buczolich.

How to cite

top

Zelený, Miroslav. "The Denjoy-Clarkson property with respect to Hausdorff measures for the gradient mapping of functions of several variables." Annales de l’institut Fourier 58.2 (2008): 405-428. <http://eudml.org/doc/10320>.

@article{Zelený2008,
abstract = {We construct a differentiable function $f:\{\mathbf\{R\}\}^n \rightarrow \{\mathbf\{R\}\}$ ($n\ge 2$) such that the set $(\nabla f)^\{-1\}(B(0,1))$ is a nonempty set of Hausdorff dimension $1$. This answers a question posed by Z. Buczolich.},
affiliation = {Charles University Faculty of Mathematics and Physics Sokolovská 83 186 75 Praha 8 (Czech Republic)},
author = {Zelený, Miroslav},
journal = {Annales de l’institut Fourier},
keywords = {Denjoy–Clarkson property; gradient; Hausdorff measure; infinite game; Denjoy-Clarkson property},
language = {eng},
number = {2},
pages = {405-428},
publisher = {Association des Annales de l’institut Fourier},
title = {The Denjoy-Clarkson property with respect to Hausdorff measures for the gradient mapping of functions of several variables},
url = {http://eudml.org/doc/10320},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Zelený, Miroslav
TI - The Denjoy-Clarkson property with respect to Hausdorff measures for the gradient mapping of functions of several variables
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 2
SP - 405
EP - 428
AB - We construct a differentiable function $f:{\mathbf{R}}^n \rightarrow {\mathbf{R}}$ ($n\ge 2$) such that the set $(\nabla f)^{-1}(B(0,1))$ is a nonempty set of Hausdorff dimension $1$. This answers a question posed by Z. Buczolich.
LA - eng
KW - Denjoy–Clarkson property; gradient; Hausdorff measure; infinite game; Denjoy-Clarkson property
UR - http://eudml.org/doc/10320
ER -

References

top
  1. A. Bruckner, Differentiation of real functions, 5 (1994), American Mathematical Society, Providence, RI Zbl0796.26004MR1274044
  2. Z. Buczolich, The n -dimensional gradient has the 1-dimensional Denjoy-Clarkson property, Real Anal. Exchange 18 (1992-93), 221-224 Zbl0783.26010MR1205514
  3. Z. Buczolich, Another note on the gradient problem of C. E. Weil, Real Anal. Exchange 22 (1996-97), 775-784 Zbl0940.26011MR1460988
  4. Z. Buczolich, Solution to the gradient problem of C. E. Weil, Rev. Mat. Iberoamericana 21 (2005), 889-910 Zbl1116.26007MR2231014
  5. J. A. Clarkson, A property of derivatives, Bull. Amer. Math. Soc. 53 (1947), 124-125 Zbl0032.27102MR19712
  6. A. Denjoy, Sur une proprieté des fonctions dérivées, Enseignement Math. 18 (1916), 320-328 Zbl46.0381.05
  7. R. Deville, É. Matheron, Infinite games, Banach space geometry and the eikonal equation, Proc. Lond. Math. Soc. (3) 95 (2007), 49-68 Zbl1163.91007MR2329548
  8. R. Engelking, General Topology, (1989), Heldermann Verlag, Berlin Zbl0684.54001MR1039321
  9. P. Holický, J. Malý, C. E. Weil, L. Zajíček, A note on the gradient problem, Real Anal. Exchange 22 (1996-97), 225-235 Zbl0879.26041MR1433610
  10. J. Malý, The Darboux property for gradients, Real Anal. Exchange 22 (1996/97), 167-173 Zbl0879.26042MR1433604
  11. J. Malý, M. Zelený, A note on Buczolich’s solution of the Weil gradient problem: a construction based on an infinite game, Acta Math. Hungar. 113 (2006), 145-158 Zbl1127.26006
  12. P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics 44 (1995), Cambridge University Press, Cambridge Zbl0819.28004MR1333890
  13. C. E. Weil, Query 1, Real Anal. Exchange 16 (1990-91) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.