The Denjoy-Clarkson property with respect to Hausdorff measures for the gradient mapping of functions of several variables
- [1] Charles University Faculty of Mathematics and Physics Sokolovská 83 186 75 Praha 8 (Czech Republic)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 2, page 405-428
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topZelený, Miroslav. "The Denjoy-Clarkson property with respect to Hausdorff measures for the gradient mapping of functions of several variables." Annales de l’institut Fourier 58.2 (2008): 405-428. <http://eudml.org/doc/10320>.
@article{Zelený2008,
abstract = {We construct a differentiable function $f:\{\mathbf\{R\}\}^n \rightarrow \{\mathbf\{R\}\}$ ($n\ge 2$) such that the set $(\nabla f)^\{-1\}(B(0,1))$ is a nonempty set of Hausdorff dimension $1$. This answers a question posed by Z. Buczolich.},
affiliation = {Charles University Faculty of Mathematics and Physics Sokolovská 83 186 75 Praha 8 (Czech Republic)},
author = {Zelený, Miroslav},
journal = {Annales de l’institut Fourier},
keywords = {Denjoy–Clarkson property; gradient; Hausdorff measure; infinite game; Denjoy-Clarkson property},
language = {eng},
number = {2},
pages = {405-428},
publisher = {Association des Annales de l’institut Fourier},
title = {The Denjoy-Clarkson property with respect to Hausdorff measures for the gradient mapping of functions of several variables},
url = {http://eudml.org/doc/10320},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Zelený, Miroslav
TI - The Denjoy-Clarkson property with respect to Hausdorff measures for the gradient mapping of functions of several variables
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 2
SP - 405
EP - 428
AB - We construct a differentiable function $f:{\mathbf{R}}^n \rightarrow {\mathbf{R}}$ ($n\ge 2$) such that the set $(\nabla f)^{-1}(B(0,1))$ is a nonempty set of Hausdorff dimension $1$. This answers a question posed by Z. Buczolich.
LA - eng
KW - Denjoy–Clarkson property; gradient; Hausdorff measure; infinite game; Denjoy-Clarkson property
UR - http://eudml.org/doc/10320
ER -
References
top- A. Bruckner, Differentiation of real functions, 5 (1994), American Mathematical Society, Providence, RI Zbl0796.26004MR1274044
- Z. Buczolich, The -dimensional gradient has the 1-dimensional Denjoy-Clarkson property, Real Anal. Exchange 18 (1992-93), 221-224 Zbl0783.26010MR1205514
- Z. Buczolich, Another note on the gradient problem of C. E. Weil, Real Anal. Exchange 22 (1996-97), 775-784 Zbl0940.26011MR1460988
- Z. Buczolich, Solution to the gradient problem of C. E. Weil, Rev. Mat. Iberoamericana 21 (2005), 889-910 Zbl1116.26007MR2231014
- J. A. Clarkson, A property of derivatives, Bull. Amer. Math. Soc. 53 (1947), 124-125 Zbl0032.27102MR19712
- A. Denjoy, Sur une proprieté des fonctions dérivées, Enseignement Math. 18 (1916), 320-328 Zbl46.0381.05
- R. Deville, É. Matheron, Infinite games, Banach space geometry and the eikonal equation, Proc. Lond. Math. Soc. (3) 95 (2007), 49-68 Zbl1163.91007MR2329548
- R. Engelking, General Topology, (1989), Heldermann Verlag, Berlin Zbl0684.54001MR1039321
- P. Holický, J. Malý, C. E. Weil, L. Zajíček, A note on the gradient problem, Real Anal. Exchange 22 (1996-97), 225-235 Zbl0879.26041MR1433610
- J. Malý, The Darboux property for gradients, Real Anal. Exchange 22 (1996/97), 167-173 Zbl0879.26042MR1433604
- J. Malý, M. Zelený, A note on Buczolich’s solution of the Weil gradient problem: a construction based on an infinite game, Acta Math. Hungar. 113 (2006), 145-158 Zbl1127.26006
- P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics 44 (1995), Cambridge University Press, Cambridge Zbl0819.28004MR1333890
- C. E. Weil, Query 1, Real Anal. Exchange 16 (1990-91)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.