Doubling conditions for harmonic measure in John domains

Hiroaki Aikawa[1]; Kentaro Hirata[2]

  • [1] Hokkaido University Department of Mathematics Sapporo 060-0810 (Japan)
  • [2] Akita University Faculty of Education and Human Studies Akita 010-8502 (Japan)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 2, page 429-445
  • ISSN: 0373-0956

Abstract

top
We introduce new classes of domains, i.e., semi-uniform domains and inner semi-uniform domains. Both of them are intermediate between the class of John domains and the class of uniform domains. Under the capacity density condition, we show that the harmonic measure of a John domain D satisfies certain doubling conditions if and only if D is a semi-uniform domain or an inner semi-uniform domain.

How to cite

top

Aikawa, Hiroaki, and Hirata, Kentaro. "Doubling conditions for harmonic measure in John domains." Annales de l’institut Fourier 58.2 (2008): 429-445. <http://eudml.org/doc/10321>.

@article{Aikawa2008,
abstract = {We introduce new classes of domains, i.e., semi-uniform domains and inner semi-uniform domains. Both of them are intermediate between the class of John domains and the class of uniform domains. Under the capacity density condition, we show that the harmonic measure of a John domain $D$ satisfies certain doubling conditions if and only if $D$ is a semi-uniform domain or an inner semi-uniform domain.},
affiliation = {Hokkaido University Department of Mathematics Sapporo 060-0810 (Japan); Akita University Faculty of Education and Human Studies Akita 010-8502 (Japan)},
author = {Aikawa, Hiroaki, Hirata, Kentaro},
journal = {Annales de l’institut Fourier},
keywords = {John domain; semi-uniform domain; inner semi-uniform domain; harmonic measure; doubling condition; capacity density condition; capacity, density condition},
language = {eng},
number = {2},
pages = {429-445},
publisher = {Association des Annales de l’institut Fourier},
title = {Doubling conditions for harmonic measure in John domains},
url = {http://eudml.org/doc/10321},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Aikawa, Hiroaki
AU - Hirata, Kentaro
TI - Doubling conditions for harmonic measure in John domains
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 2
SP - 429
EP - 445
AB - We introduce new classes of domains, i.e., semi-uniform domains and inner semi-uniform domains. Both of them are intermediate between the class of John domains and the class of uniform domains. Under the capacity density condition, we show that the harmonic measure of a John domain $D$ satisfies certain doubling conditions if and only if $D$ is a semi-uniform domain or an inner semi-uniform domain.
LA - eng
KW - John domain; semi-uniform domain; inner semi-uniform domain; harmonic measure; doubling condition; capacity density condition; capacity, density condition
UR - http://eudml.org/doc/10321
ER -

References

top
  1. H. Aikawa, Boundary Harnack principle and Martin boundary for a uniform domain, J. Math. Soc. Japan 53 (2001), 119-145 Zbl0976.31002MR1800526
  2. H. Aikawa, Hölder continuity of the Dirichlet solution for a general domain, Bull. London Math. Soc. 34 (2002), 691-702 Zbl1036.31003MR1924196
  3. H. Aikawa, K. Hirata, T. Lundh, Martin boundary points of a John domain and unions of convex sets, J. Math. Soc. Japan 58 (2006), 247-274 Zbl1092.31006MR2204573
  4. H. Aikawa, T. Lundh, T. Mizutani, Martin boundary of a fractal domain, Potential Anal. 18 (2003), 311-357 Zbl1021.31002MR1953266
  5. A. Ancona, On strong barriers and an inequality of Hardy for domains in R n , J. London Math. Soc. (2) 34 (1986), 274-290 Zbl0629.31002MR856511
  6. Z. Balogh, A. Volberg, Boundary Harnack principle for separated semihyperbolic repellers, harmonic measure applications, Rev. Mat. Iberoamericana 12 (1996), 299-336 Zbl0857.31006MR1402670
  7. Z. Balogh, A. Volberg, Geometric localization, uniformly John property and separated semihyperbolic dynamics, Ark. Mat. 34 (1996), 21-49 Zbl0855.30022MR1396621
  8. R. F. Bass, K. Burdzy, A boundary Harnack principle in twisted Hölder domains, Ann. of Math. (2) 134 (1991), 253-276 Zbl0747.31008MR1127476
  9. M. Bonk, J. Heinonen, P. Koskela, Uniformizing Gromov hyperbolic spaces, Astérisque 270 (2001) Zbl0970.30010MR1829896
  10. F. W. Gehring, O. Martio, Lipschitz classes and quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 203-219 Zbl0584.30018MR802481
  11. F. W. Gehring, O. Martio, Quasiextremal distance domains and extension of quasiconformal mappings, J. Analyse Math. 45 (1985), 181-206 Zbl0596.30031MR833411
  12. F. W. Gehring, B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. Analyse Math. 36 (1979), 50-74 Zbl0449.30012MR581801
  13. D. S. Jerison, C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. in Math. 46 (1982), 80-147 Zbl0514.31003MR676988
  14. K. Kim, N. Langmeyer, Harmonic measure and hyperbolic distance in John disks, Math. Scand. 83 (1998), 283-299 Zbl0927.30015MR1673938
  15. J. Väisälä, Uniform domains, Tohoku Math. J. (2) 40 (1988), 101-118 Zbl0627.30017MR927080
  16. J. Väisälä, Relatively and inner uniform domains, Conform. Geom. Dyn. 2 (1998), 56-88 Zbl0902.30017MR1637079

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.