Riemann-Roch theorem for higher bivariant K-functors

Roni N. Levy[1]

  • [1] Sofia University Faculty of Mathematics and Informatics Bd. J.Bourchier 5 Sofia 1164 (Bulgaria)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 2, page 571-601
  • ISSN: 0373-0956

Abstract

top
One defines a Riemann-Roch natural transformation from algebraic to topological higher bivariant K-theory in the category of complex spaces.

How to cite

top

Levy, Roni N.. "Riemann-Roch theorem for higher bivariant K-functors." Annales de l’institut Fourier 58.2 (2008): 571-601. <http://eudml.org/doc/10325>.

@article{Levy2008,
abstract = {One defines a Riemann-Roch natural transformation from algebraic to topological higher bivariant K-theory in the category of complex spaces.},
affiliation = {Sofia University Faculty of Mathematics and Informatics Bd. J.Bourchier 5 Sofia 1164 (Bulgaria)},
author = {Levy, Roni N.},
journal = {Annales de l’institut Fourier},
keywords = {Perfect sheaf; classifying space of the category; K-groups; bivariant -theory; bivariant Riemann-Roch transformation; higher -theory; Riemann-Roch theorem; Waldhausen -theory},
language = {eng},
number = {2},
pages = {571-601},
publisher = {Association des Annales de l’institut Fourier},
title = {Riemann-Roch theorem for higher bivariant K-functors},
url = {http://eudml.org/doc/10325},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Levy, Roni N.
TI - Riemann-Roch theorem for higher bivariant K-functors
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 2
SP - 571
EP - 601
AB - One defines a Riemann-Roch natural transformation from algebraic to topological higher bivariant K-theory in the category of complex spaces.
LA - eng
KW - Perfect sheaf; classifying space of the category; K-groups; bivariant -theory; bivariant Riemann-Roch transformation; higher -theory; Riemann-Roch theorem; Waldhausen -theory
UR - http://eudml.org/doc/10325
ER -

References

top
  1. B. Angeniol, M. Lejeune-Jalabert, Calcul différentiel et classes caractéristiques en géométrie algébrique, (1985) Zbl0749.14008
  2. M. F. Atiyah, K-theory, (1965), Harvard Univ., Cambridge, Mass. 
  3. P. Baum, W. Fulton, R. Macpherson, Riemann-Roch and topological K-theory for singular varieties, Acta Math. 143 (1979), 155-192 Zbl0474.14004MR549773
  4. O. Forster, K. Knorr, Ein Beweis des grauertsche Bildgarbensatzes nach ideen von B. Malgrange, Manuscripta Math. 5 (1971), 19-44 Zbl0242.32008MR308437
  5. William Fulton, Robert MacPherson, Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc. 31 (1981) Zbl0467.55005MR609831
  6. H. Gillet, Riemann-Roch theorems for higher algebraic K-theory, Adv. Math. 40 (1981), 203-289 Zbl0478.14010MR624666
  7. H. Gillet, Comparing algebraic and topological K-theory, Lect. Notes in Math. 1491 (1992), 54-99 
  8. R. Godement, Topologie algebraique et theorie de faisceaux, (1958), Hermann, Paris Zbl0080.16201MR102797
  9. R. Levy, Riemann-Roch theorem for complex spaces, Acta Mathematica 158 (1987), 149-188 Zbl0627.32004MR892589
  10. D. Quillen, Higher algebraic K-theory I, Springer Lect. Notes in Math. 341 (1972), 85-148 Zbl0292.18004MR338129
  11. R. W. Thomason, T. Trobaugh, Higher algebraic K-theory of schemes and of derived categories, The Grothendieck festschrift III, Progress in Math. v. 88 (1990), 247-437 Zbl0731.14001MR1106918
  12. F. Waldhausen, Algebraic K-theory of spaces, Springer Lect. Notes in Math. 1126 (1985), 318-419 Zbl0579.18006MR802796

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.