Riemann-Roch theorem for higher bivariant K-functors
Roni N. Levy[1]
- [1] Sofia University Faculty of Mathematics and Informatics Bd. J.Bourchier 5 Sofia 1164 (Bulgaria)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 2, page 571-601
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLevy, Roni N.. "Riemann-Roch theorem for higher bivariant K-functors." Annales de l’institut Fourier 58.2 (2008): 571-601. <http://eudml.org/doc/10325>.
@article{Levy2008,
abstract = {One defines a Riemann-Roch natural transformation from algebraic to topological higher bivariant K-theory in the category of complex spaces.},
affiliation = {Sofia University Faculty of Mathematics and Informatics Bd. J.Bourchier 5 Sofia 1164 (Bulgaria)},
author = {Levy, Roni N.},
journal = {Annales de l’institut Fourier},
keywords = {Perfect sheaf; classifying space of the category; K-groups; bivariant -theory; bivariant Riemann-Roch transformation; higher -theory; Riemann-Roch theorem; Waldhausen -theory},
language = {eng},
number = {2},
pages = {571-601},
publisher = {Association des Annales de l’institut Fourier},
title = {Riemann-Roch theorem for higher bivariant K-functors},
url = {http://eudml.org/doc/10325},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Levy, Roni N.
TI - Riemann-Roch theorem for higher bivariant K-functors
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 2
SP - 571
EP - 601
AB - One defines a Riemann-Roch natural transformation from algebraic to topological higher bivariant K-theory in the category of complex spaces.
LA - eng
KW - Perfect sheaf; classifying space of the category; K-groups; bivariant -theory; bivariant Riemann-Roch transformation; higher -theory; Riemann-Roch theorem; Waldhausen -theory
UR - http://eudml.org/doc/10325
ER -
References
top- B. Angeniol, M. Lejeune-Jalabert, Calcul différentiel et classes caractéristiques en géométrie algébrique, (1985) Zbl0749.14008
- M. F. Atiyah, K-theory, (1965), Harvard Univ., Cambridge, Mass.
- P. Baum, W. Fulton, R. Macpherson, Riemann-Roch and topological K-theory for singular varieties, Acta Math. 143 (1979), 155-192 Zbl0474.14004MR549773
- O. Forster, K. Knorr, Ein Beweis des grauertsche Bildgarbensatzes nach ideen von B. Malgrange, Manuscripta Math. 5 (1971), 19-44 Zbl0242.32008MR308437
- William Fulton, Robert MacPherson, Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc. 31 (1981) Zbl0467.55005MR609831
- H. Gillet, Riemann-Roch theorems for higher algebraic K-theory, Adv. Math. 40 (1981), 203-289 Zbl0478.14010MR624666
- H. Gillet, Comparing algebraic and topological K-theory, Lect. Notes in Math. 1491 (1992), 54-99
- R. Godement, Topologie algebraique et theorie de faisceaux, (1958), Hermann, Paris Zbl0080.16201MR102797
- R. Levy, Riemann-Roch theorem for complex spaces, Acta Mathematica 158 (1987), 149-188 Zbl0627.32004MR892589
- D. Quillen, Higher algebraic K-theory I, Springer Lect. Notes in Math. 341 (1972), 85-148 Zbl0292.18004MR338129
- R. W. Thomason, T. Trobaugh, Higher algebraic K-theory of schemes and of derived categories, The Grothendieck festschrift III, Progress in Math. v. 88 (1990), 247-437 Zbl0731.14001MR1106918
- F. Waldhausen, Algebraic K-theory of spaces, Springer Lect. Notes in Math. 1126 (1985), 318-419 Zbl0579.18006MR802796
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.