Zeros of eigenfunctions of some anharmonic oscillators
Alexandre Eremenko[1]; Andrei Gabrielov[1]; Boris Shapiro[2]
- [1] Purdue University West Lafayette, IN 47907-2067 (USA)
- [2] Stockholm University Stockholm, S-10691 (Sweden)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 2, page 603-624
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topEremenko, Alexandre, Gabrielov, Andrei, and Shapiro, Boris. "Zeros of eigenfunctions of some anharmonic oscillators." Annales de l’institut Fourier 58.2 (2008): 603-624. <http://eudml.org/doc/10326>.
@article{Eremenko2008,
abstract = {We study complex zeros of eigenfunctions of second order linear differential operators with real even polynomial potentials. For potentials of degree 4, we prove that all zeros of all eigenfunctions belong to the union of the real and imaginary axes. For potentials of degree 6, we classify eigenfunctions with finitely many zeros, and show that in this case too, all zeros are real or pure imaginary.},
affiliation = {Purdue University West Lafayette, IN 47907-2067 (USA); Purdue University West Lafayette, IN 47907-2067 (USA); Stockholm University Stockholm, S-10691 (Sweden)},
author = {Eremenko, Alexandre, Gabrielov, Andrei, Shapiro, Boris},
journal = {Annales de l’institut Fourier},
keywords = {Eigenfunctions; meromorphic functions; distribution of zeros; second order differential operator; eigenfunctions},
language = {eng},
number = {2},
pages = {603-624},
publisher = {Association des Annales de l’institut Fourier},
title = {Zeros of eigenfunctions of some anharmonic oscillators},
url = {http://eudml.org/doc/10326},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Eremenko, Alexandre
AU - Gabrielov, Andrei
AU - Shapiro, Boris
TI - Zeros of eigenfunctions of some anharmonic oscillators
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 2
SP - 603
EP - 624
AB - We study complex zeros of eigenfunctions of second order linear differential operators with real even polynomial potentials. For potentials of degree 4, we prove that all zeros of all eigenfunctions belong to the union of the real and imaginary axes. For potentials of degree 6, we classify eigenfunctions with finitely many zeros, and show that in this case too, all zeros are real or pure imaginary.
LA - eng
KW - Eigenfunctions; meromorphic functions; distribution of zeros; second order differential operator; eigenfunctions
UR - http://eudml.org/doc/10326
ER -
References
top- S. Bank, A note on the zeros of solutions where is a polynomial, Appl. Anal. 25 (1987), 29-41 Zbl0589.34008MR911957
- F. A. Berezin, M. A. Shubin, The Schrödinger equation, (1991), Kluwer, Dordrecht Zbl0749.35001MR1186643
- E. Drape, Über die Darstellung Riemannscher Flächen durch Streckenkomplexe, Deutsche Math. 1 (1936), 805-824 Zbl0016.08101
- Duc Tai Trinh, Asymptotique et analyse spectrale de l’oscillateur cubique, (2002)
- Duc Tai Trinh, On the Sturm-Liouville problem for complex cubic oscillator, Asymptot. Anal. 40 (2004), 211-324 Zbl1076.34026MR2107630
- A. Eremenko, A. Gabrielov, B. Shapiro, High energy eigenfunctions of one-dimensional Schrödinger operators with polynomial potentials Zbl1156.34072
- A. Eremenko, S. Merenkov, Nevanlinna functions with real zeros, Illinois J. Math. 49 (2005), 1093-1110 Zbl1098.34072MR2210353
- A. A. Goldberg, I. V. Ostrovskii, Distribution of values of meromorphic functions, (1970), Nauka, Moscow MR280720
- A. González-Lopéz, N. Kamran, P. Olver, Normalizability of one-dimensional quasi-exactly solvable Schrödinger operators, Comm. Math. Phys. 153 (1993), 117-146 Zbl0767.35052MR1213738
- E. Hille, Lectures on ordinary differential equations, (1969), Addison-Wesley, Menlo Park, CA Zbl0179.40301MR249698
- E. Hille, Ordinary differential equations in the complex domain, (1976), John Wiley and Sons, New York Zbl0343.34007MR499382
- N. Kamran, P. Olver, Lie algebras, cohomology and new applications in quantum mechanics, 160 (1994), Amer. Math. Soc., Providence, RI Zbl0793.00019MR1277370
- R. Nevanlinna, Über die Herstellung transzendenter Funktionen als Grenzwerte rationaler Funktionen, Acta Math. 55 (1930), 259-276 Zbl56.0278.01MR1555317
- R. Nevanlinna, Über Riemannsche Flächen mit endlich vielen Windungspunkten, Acta Math. 58 (1932), 295-373 Zbl0004.35504MR1555350
- R. Nevanlinna, Eindeutige analytische Funktionen, 2-te Aufl., (1953), Springer, Berlin-Göttingen-Heidelberg Zbl0050.30302MR57330
- M. Shifman, Quasi-exactly-solvable spectral problems and conformal field theory, 160 (1994), Amer. Math. Soc., Providence, RI Zbl0805.58065MR1277385
- Y. Sibuya, Global theory of a second order linear ordinary differential equation with a polynomial coefficient, (1995), North-Holland Publishing Co., Amsterdam-Oxford Zbl0322.34006MR486867
- T. Stieltjes, Sur certains polynômes qui vérifient une équation differentielle linéaire du second ordre et sur la théorie des fonctions de Lamé, Acta Math. 6 (1885), 321-326 MR1554669
- T. Stieltjes, Œuvres complètes, 1 (1993), Springer, Berlin Zbl0779.01010
- E. Titchmarsh, Eigenfunction expansions associated with second order differential equations, 1 (1946), Clarendon Press, Oxford Zbl0061.13505
- A. Turbiner, Quasi-exactly-solvable problems and algebra, Comm. Math. Phys. 118 (1988), 467-474 Zbl0683.35063MR958807
- A. Turbiner, Lie algebras and linear operators with invariant subspaces, 160 (1994), Amer. Math. Soc., Providence, RI Zbl0809.17023MR1277386
- A. Turbiner, Anharmonic oscillator and double well potential: approximating eigenfunctions, Letters in Math. Phys. 74 (2005), 169-180 Zbl1092.34049MR2191953
- A. Turbiner, A. Ushveridze, Spectral singularities and the quasi-exactly solvable problem, Phys. Lett. A 126 (1987), 181-183 MR921178
- A. Ushveridze, Quasi-exactly solvable models in quantum mechanics, (1994), Inst. of Physics Publ., Bristol Zbl0834.58042MR1329549
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.