Zeros of eigenfunctions of some anharmonic oscillators

Alexandre Eremenko[1]; Andrei Gabrielov[1]; Boris Shapiro[2]

  • [1] Purdue University West Lafayette, IN 47907-2067 (USA)
  • [2] Stockholm University Stockholm, S-10691 (Sweden)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 2, page 603-624
  • ISSN: 0373-0956

Abstract

top
We study complex zeros of eigenfunctions of second order linear differential operators with real even polynomial potentials. For potentials of degree 4, we prove that all zeros of all eigenfunctions belong to the union of the real and imaginary axes. For potentials of degree 6, we classify eigenfunctions with finitely many zeros, and show that in this case too, all zeros are real or pure imaginary.

How to cite

top

Eremenko, Alexandre, Gabrielov, Andrei, and Shapiro, Boris. "Zeros of eigenfunctions of some anharmonic oscillators." Annales de l’institut Fourier 58.2 (2008): 603-624. <http://eudml.org/doc/10326>.

@article{Eremenko2008,
abstract = {We study complex zeros of eigenfunctions of second order linear differential operators with real even polynomial potentials. For potentials of degree 4, we prove that all zeros of all eigenfunctions belong to the union of the real and imaginary axes. For potentials of degree 6, we classify eigenfunctions with finitely many zeros, and show that in this case too, all zeros are real or pure imaginary.},
affiliation = {Purdue University West Lafayette, IN 47907-2067 (USA); Purdue University West Lafayette, IN 47907-2067 (USA); Stockholm University Stockholm, S-10691 (Sweden)},
author = {Eremenko, Alexandre, Gabrielov, Andrei, Shapiro, Boris},
journal = {Annales de l’institut Fourier},
keywords = {Eigenfunctions; meromorphic functions; distribution of zeros; second order differential operator; eigenfunctions},
language = {eng},
number = {2},
pages = {603-624},
publisher = {Association des Annales de l’institut Fourier},
title = {Zeros of eigenfunctions of some anharmonic oscillators},
url = {http://eudml.org/doc/10326},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Eremenko, Alexandre
AU - Gabrielov, Andrei
AU - Shapiro, Boris
TI - Zeros of eigenfunctions of some anharmonic oscillators
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 2
SP - 603
EP - 624
AB - We study complex zeros of eigenfunctions of second order linear differential operators with real even polynomial potentials. For potentials of degree 4, we prove that all zeros of all eigenfunctions belong to the union of the real and imaginary axes. For potentials of degree 6, we classify eigenfunctions with finitely many zeros, and show that in this case too, all zeros are real or pure imaginary.
LA - eng
KW - Eigenfunctions; meromorphic functions; distribution of zeros; second order differential operator; eigenfunctions
UR - http://eudml.org/doc/10326
ER -

References

top
  1. S. Bank, A note on the zeros of solutions w + P ( z ) w = 0 where P is a polynomial, Appl. Anal. 25 (1987), 29-41 Zbl0589.34008MR911957
  2. F. A. Berezin, M. A. Shubin, The Schrödinger equation, (1991), Kluwer, Dordrecht Zbl0749.35001MR1186643
  3. E. Drape, Über die Darstellung Riemannscher Flächen durch Streckenkomplexe, Deutsche Math. 1 (1936), 805-824 Zbl0016.08101
  4. Duc Tai Trinh, Asymptotique et analyse spectrale de l’oscillateur cubique, (2002) 
  5. Duc Tai Trinh, On the Sturm-Liouville problem for complex cubic oscillator, Asymptot. Anal. 40 (2004), 211-324 Zbl1076.34026MR2107630
  6. A. Eremenko, A. Gabrielov, B. Shapiro, High energy eigenfunctions of one-dimensional Schrödinger operators with polynomial potentials Zbl1156.34072
  7. A. Eremenko, S. Merenkov, Nevanlinna functions with real zeros, Illinois J. Math. 49 (2005), 1093-1110 Zbl1098.34072MR2210353
  8. A. A. Goldberg, I. V. Ostrovskii, Distribution of values of meromorphic functions, (1970), Nauka, Moscow MR280720
  9. A. González-Lopéz, N. Kamran, P. Olver, Normalizability of one-dimensional quasi-exactly solvable Schrödinger operators, Comm. Math. Phys. 153 (1993), 117-146 Zbl0767.35052MR1213738
  10. E. Hille, Lectures on ordinary differential equations, (1969), Addison-Wesley, Menlo Park, CA Zbl0179.40301MR249698
  11. E. Hille, Ordinary differential equations in the complex domain, (1976), John Wiley and Sons, New York Zbl0343.34007MR499382
  12. N. Kamran, P. Olver, Lie algebras, cohomology and new applications in quantum mechanics, 160 (1994), Amer. Math. Soc., Providence, RI Zbl0793.00019MR1277370
  13. R. Nevanlinna, Über die Herstellung transzendenter Funktionen als Grenzwerte rationaler Funktionen, Acta Math. 55 (1930), 259-276 Zbl56.0278.01MR1555317
  14. R. Nevanlinna, Über Riemannsche Flächen mit endlich vielen Windungspunkten, Acta Math. 58 (1932), 295-373 Zbl0004.35504MR1555350
  15. R. Nevanlinna, Eindeutige analytische Funktionen, 2-te Aufl., (1953), Springer, Berlin-Göttingen-Heidelberg Zbl0050.30302MR57330
  16. M. Shifman, Quasi-exactly-solvable spectral problems and conformal field theory, 160 (1994), Amer. Math. Soc., Providence, RI Zbl0805.58065MR1277385
  17. Y. Sibuya, Global theory of a second order linear ordinary differential equation with a polynomial coefficient, (1995), North-Holland Publishing Co., Amsterdam-Oxford Zbl0322.34006MR486867
  18. T. Stieltjes, Sur certains polynômes qui vérifient une équation differentielle linéaire du second ordre et sur la théorie des fonctions de Lamé, Acta Math. 6 (1885), 321-326 MR1554669
  19. T. Stieltjes, Œuvres complètes, 1 (1993), Springer, Berlin Zbl0779.01010
  20. E. Titchmarsh, Eigenfunction expansions associated with second order differential equations, 1 (1946), Clarendon Press, Oxford Zbl0061.13505
  21. A. Turbiner, Quasi-exactly-solvable problems and sl ( 2 ) algebra, Comm. Math. Phys. 118 (1988), 467-474 Zbl0683.35063MR958807
  22. A. Turbiner, Lie algebras and linear operators with invariant subspaces, 160 (1994), Amer. Math. Soc., Providence, RI Zbl0809.17023MR1277386
  23. A. Turbiner, Anharmonic oscillator and double well potential: approximating eigenfunctions, Letters in Math. Phys. 74 (2005), 169-180 Zbl1092.34049MR2191953
  24. A. Turbiner, A. Ushveridze, Spectral singularities and the quasi-exactly solvable problem, Phys. Lett. A 126 (1987), 181-183 MR921178
  25. A. Ushveridze, Quasi-exactly solvable models in quantum mechanics, (1994), Inst. of Physics Publ., Bristol Zbl0834.58042MR1329549

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.