Codimension one minimal foliations and the fundamental groups of leaves
Tomoo Yokoyama[1]; Takashi Tsuboi[2]
- [1] The University of Tokyo Graduate School of Mathematical Sciences Komaba Meguro, Tokyo 153-8914, Japan
- [2] The University of Tokyo Graduate School of Mathematical Sciences Komaba Meguro, Tokyo 153-8914 (Japan)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 2, page 723-731
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topYokoyama, Tomoo, and Tsuboi, Takashi. "Codimension one minimal foliations and the fundamental groups of leaves." Annales de l’institut Fourier 58.2 (2008): 723-731. <http://eudml.org/doc/10330>.
@article{Yokoyama2008,
abstract = {Let $\mathcal\{F\}$ be a transversely orientable transversely real-analytic codimension one minimal foliation of a paracompact manifold $M$. We show that if the fundamental group of each leaf of $\mathcal\{F\}$ is isomorphic to $Z$, then $\mathcal\{F\}$ is without holonomy. We also show that if $\pi _2( M )\cong 0$ and the fundamental group of each leaf of $\mathcal\{F\}$ is isomorphic to $Z ^k $ ($k \in Z_\{\ge 0\}$), then $\mathcal\{F\}$ is without holonomy.},
affiliation = {The University of Tokyo Graduate School of Mathematical Sciences Komaba Meguro, Tokyo 153-8914, Japan; The University of Tokyo Graduate School of Mathematical Sciences Komaba Meguro, Tokyo 153-8914 (Japan)},
author = {Yokoyama, Tomoo, Tsuboi, Takashi},
journal = {Annales de l’institut Fourier},
keywords = {Foliations; real-analytic; holonomy; fundamental groups of leaves; foliations; fundamental group of leaves},
language = {eng},
number = {2},
pages = {723-731},
publisher = {Association des Annales de l’institut Fourier},
title = {Codimension one minimal foliations and the fundamental groups of leaves},
url = {http://eudml.org/doc/10330},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Yokoyama, Tomoo
AU - Tsuboi, Takashi
TI - Codimension one minimal foliations and the fundamental groups of leaves
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 2
SP - 723
EP - 731
AB - Let $\mathcal{F}$ be a transversely orientable transversely real-analytic codimension one minimal foliation of a paracompact manifold $M$. We show that if the fundamental group of each leaf of $\mathcal{F}$ is isomorphic to $Z$, then $\mathcal{F}$ is without holonomy. We also show that if $\pi _2( M )\cong 0$ and the fundamental group of each leaf of $\mathcal{F}$ is isomorphic to $Z ^k $ ($k \in Z_{\ge 0}$), then $\mathcal{F}$ is without holonomy.
LA - eng
KW - Foliations; real-analytic; holonomy; fundamental groups of leaves; foliations; fundamental group of leaves
UR - http://eudml.org/doc/10330
ER -
References
top- John Cantwell, Lawrence Conlon, Leaf prescriptions for closed -manifolds, Trans. Amer. Math. Soc. 236 (1978), 239-261 Zbl0398.57009MR645738
- John Cantwell, Lawrence Conlon, Endsets of exceptional leaves; a theorem of G. Duminy, Foliations: geometry and dynamics (Warsaw, 2000) (2002), 225-261, World Sci. Publ., River Edge, NJ Zbl1011.57009MR1882772
- D. B. A. Epstein, K. C. Millett, D. Tischler, Leaves without holonomy, J. London Math. Soc. (2) 16 (1977), 548-552 Zbl0381.57007MR464259
- F. T. Farrell, L. E. Jones, The surgery -groups of poly-(finite or cyclic) groups, Invent. Math. 91 (1988), 559-586 Zbl0657.57015MR928498
- André Haefliger, Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comment. Math. Helv. 32 (1958), 248-329 Zbl0085.17303MR100269
- M. Hirsch, A stable analytic foliation with only exceptional minimal sets, Dynamical Systems 468 (1975), 9-10, Springer, Berlin, Heidelberg, New York Zbl0309.53053
- B. Kerékjártó, Vorlesungen uber Topologie, I (1923), Springer, Berlin Zbl49.0396.07
- S. P. Novikov, Topology of foliations, Trans. Mosc. Math. Soc. 14 (1965), 268-304 Zbl0247.57006MR200938
- I. Richards, On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106 (1963), 259-269 Zbl0156.22203MR143186
- D. Tischler, On fibering certain foliated manifolds over , Topology 9 (1970), 153-154 Zbl0177.52103MR256413
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.