Almost regular quaternary quadratic forms
Jacek Bochnak[1]; Byeong-Kweon Oh[2]
- [1] Vrije Universiteit Department of Mathematics 1081 HV Amsterdam De Boelelaan 1081 A (The Netherlands)
- [2] Sejong University Department of Applied Mathematics Seoul, 143-747 (Korea)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 5, page 1499-1549
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBochnak, Jacek, and Oh, Byeong-Kweon. "Almost regular quaternary quadratic forms." Annales de l’institut Fourier 58.5 (2008): 1499-1549. <http://eudml.org/doc/10355>.
@article{Bochnak2008,
abstract = {We investigate the almost regular positive definite integral quaternary quadratic forms. In particular, we show that every such form is $p$-anisotropic for at most one prime number $p$. Moreover, for a prime $p$ there is an almost regular $p$-anisotropic quaternary quadratic form if and only if $p \le 37$. We also study the genera containing some almost regular $p$-anisotropic quaternary form. We show several finiteness results concerning the families of these genera and give effective criteria for almost regularity.},
affiliation = {Vrije Universiteit Department of Mathematics 1081 HV Amsterdam De Boelelaan 1081 A (The Netherlands); Sejong University Department of Applied Mathematics Seoul, 143-747 (Korea)},
author = {Bochnak, Jacek, Oh, Byeong-Kweon},
journal = {Annales de l’institut Fourier},
keywords = {Quadratic equations; almost regular quadratic forms; quadratic equations},
language = {eng},
number = {5},
pages = {1499-1549},
publisher = {Association des Annales de l’institut Fourier},
title = {Almost regular quaternary quadratic forms},
url = {http://eudml.org/doc/10355},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Bochnak, Jacek
AU - Oh, Byeong-Kweon
TI - Almost regular quaternary quadratic forms
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 5
SP - 1499
EP - 1549
AB - We investigate the almost regular positive definite integral quaternary quadratic forms. In particular, we show that every such form is $p$-anisotropic for at most one prime number $p$. Moreover, for a prime $p$ there is an almost regular $p$-anisotropic quaternary quadratic form if and only if $p \le 37$. We also study the genera containing some almost regular $p$-anisotropic quaternary form. We show several finiteness results concerning the families of these genera and give effective criteria for almost regularity.
LA - eng
KW - Quadratic equations; almost regular quadratic forms; quadratic equations
UR - http://eudml.org/doc/10355
ER -
References
top- A. N. Andrianov, Quadratic Forms and Hecke operators, (1987), Springer-Verlag, Berlin Zbl0613.10023MR884891
- M. Bhargava, On the Conway-Schneeberger fifteen theorem, in ‘Quadratic Forms and Their Applications’ (Dublin), pp.27–37, 272 (2000), Amer. Math. Soc., Providence, RI Zbl0987.11027
- M. Bhargava, J. Hanke, Universal quadratic forms and the theorem
- J. Bochnak, B.-K. Oh, Almost universal quadratic forms: an effective solution of a problem of Ramanujan Zbl1242.11028
- J. W. S. Cassels, Rational Quadratic Forms, (1978), Academic Press, London Zbl0395.10029MR522835
- W. K. Chan, A. Earnest, B.-K. Oh, Regularity properties of positive definite integral quadratic forms. Algebraic and arithmetic theory of quadratic forms, pp.59–71, 344 (2004), Amer. Math. Soc., Providence, RI Zbl1142.11326MR2058667
- W. K. Chan, B.-K. Oh, Finiteness theorems for positive definite -regular quadratic forms, Trans. Amer. Math. Soc. 355 (2003), 2385-2396 Zbl1026.11046MR1973994
- W. K. Chan, B.-K. Oh, Positive ternary quadratic forms with finitely many exceptions, Proc. Amer. Math. Soc. 132 (2004), 1567-1573 Zbl1129.11310MR2051115
- L. Gerstein, The growth of class numbers of quadratic forms, Amer. J. Math. 94 (1972), 221-236 Zbl0252.10018MR319889
- J. Hanke, Universal quadratic forms and the theorem
- W. C. Jagy, I. Kaplansky, A. Schiemann, There are 913 regular ternary forms, Mathematika 44 (1997), 332-341 Zbl0923.11060MR1600553
- H. D. Kloosterman, On the representation of numbers in the form , Acta Math. 49 (1926), 407-464 Zbl53.0155.01
- J. Martinet, Perfect Lattices in Euclidean Spaces, (2003), Springer-Verlag, Berlin Zbl1017.11031MR1957723
- Y. Mimura, Universal quadratic forms
- O. T. O’Meara, Introduction to Quadratic Forms, (1963), Springer-Verlag Zbl0107.03301
- G. Pall, A. Ross, An extension of a problem of Kloosterman, Amer. J. Math. 68 (1946), 59-65 Zbl0060.11002MR14378
- J.-P. Serre, A Course in Arithmetic, (1973), Springer-Verlag Zbl0256.12001MR344216
- W. Tartakowsky, Die Gesamtheit der Zahlen, die durch eine positive quadratische Form darstellbar sind, Isv. Akad. Nauk SSSR 7 (1929), 111-122, 165-195 Zbl56.0882.04
- G. L. Watson, Some problems in the theory of numbers, (1953)
- G. L. Watson, Transformations of a quadratic form which do not increase the class-number, Proc. London Math. Soc. (3) 12 (1962), 577-587 Zbl0107.26901MR142512
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.