Quadratic uniformity of the Möbius function

Ben Green[1]; Terence Tao[2]

  • [1] Centre for Mathematical Sciences Wilberforce Road Cambridge CB3 0WA (England)
  • [2] UCLA Department of Mathematics Los Angeles CA 90095-1596 (USA)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 6, page 1863-1935
  • ISSN: 0373-0956

Abstract

top
We prove the “Möbius and Nilsequences Conjecture” for nilsystems of step 1 and 2. This paper forms a part of our program to generalise the Hardy-Littlewood method so as to handle systems of linear equations in primes.

How to cite

top

Green, Ben, and Tao, Terence. "Quadratic uniformity of the Möbius function." Annales de l’institut Fourier 58.6 (2008): 1863-1935. <http://eudml.org/doc/10365>.

@article{Green2008,
abstract = {We prove the “Möbius and Nilsequences Conjecture” for nilsystems of step 1 and 2. This paper forms a part of our program to generalise the Hardy-Littlewood method so as to handle systems of linear equations in primes.},
affiliation = {Centre for Mathematical Sciences Wilberforce Road Cambridge CB3 0WA (England); UCLA Department of Mathematics Los Angeles CA 90095-1596 (USA)},
author = {Green, Ben, Tao, Terence},
journal = {Annales de l’institut Fourier},
keywords = {Quadratic uniformity; Möbius function; quadratic uniformity; Gowers inverse conjectures},
language = {eng},
number = {6},
pages = {1863-1935},
publisher = {Association des Annales de l’institut Fourier},
title = {Quadratic uniformity of the Möbius function},
url = {http://eudml.org/doc/10365},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Green, Ben
AU - Tao, Terence
TI - Quadratic uniformity of the Möbius function
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 6
SP - 1863
EP - 1935
AB - We prove the “Möbius and Nilsequences Conjecture” for nilsystems of step 1 and 2. This paper forms a part of our program to generalise the Hardy-Littlewood method so as to handle systems of linear equations in primes.
LA - eng
KW - Quadratic uniformity; Möbius function; quadratic uniformity; Gowers inverse conjectures
UR - http://eudml.org/doc/10365
ER -

References

top
  1. L. Auslander, L. Green, F. Hahn, Flows on homogeneous spaces, (1963), Princeton University Press, Princeton, N.J. Zbl0106.36802
  2. Yuri Bilu, Structure of sets with small sumset, Astérisque (1999), xi, 77-108 Zbl0946.11004MR1701189
  3. Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 1–3, (1998), Springer-Verlag, Berlin Zbl0672.22001MR1728312
  4. J. Bourgain, On Λ ( p ) -subsets of squares, Israel J. Math. 67 (1989), 291-311 Zbl0692.43005MR1029904
  5. Lawrence J. Corwin, Frederick P. Greenleaf, Representations of nilpotent Lie groups and their applications. Part I, 18 (1990), Cambridge University Press, Cambridge Zbl0704.22007MR1070979
  6. H. Davenport, On some infinite series involving arithmetical functions. II, Quart. J. Math. Oxf. 8 (1937), 313-320 Zbl63.0906.01
  7. Harold Davenport, Multiplicative number theory, 74 (2000), Springer-Verlag, New York Zbl1002.11001MR1790423
  8. Hillel Furstenberg, Nonconventional ergodic averages, The legacy of John von Neumann (Hempstead, NY, 1988) 50 (1990), 43-56, Amer. Math. Soc., Providence, RI Zbl0711.28006MR1067751
  9. W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), 465-588 Zbl1028.11005
  10. B. J. Green, T. C. Tao, Linear equations in primes Zbl1242.11071
  11. B. J. Green, T. C. Tao, An inverse theorem for the Gowers U 3 -norm, Proc. Edinburgh Math. Soc. 51 (2008), 73-153 Zbl1202.11013MR2391635
  12. B. J. Green, T. C. Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Math. 167 (2008), 481-547 Zbl1191.11025MR2415379
  13. Ben Green, Finite field models in additive combinatorics, Surveys in combinatorics 2005 327 (2005), 1-27, Cambridge Univ. Press, Cambridge Zbl1155.11306MR2187732
  14. L. K. Hua, Some results in the additive prime number theory, Quart. J. Math. Oxford 9 (1938), 68-80 Zbl0018.29404
  15. Henryk Iwaniec, Emmanuel Kowalski, Analytic number theory, 53 (2004), American Mathematical Society, Providence, RI Zbl1059.11001MR2061214
  16. A. I. Mal’cev, On a class of homogeneous spaces, Izvestiya Akad. Nauk. SSSR. Ser. Mat. 13 (1949), 9-32 
  17. Hugh L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, 84 (1994), Published for the Conference Board of the Mathematical Sciences, Washington, DC Zbl0814.11001MR1297543
  18. Imre Z. Ruzsa, On an additive property of squares and primes, Acta Arith. 49 (1988), 281-289 Zbl0636.10042MR932527
  19. Terence Tao, Arithmetic progressions and the primes, Collect. Math. (2006), 37-88 Zbl1109.11043MR2264205
  20. Terence Tao, Van Vu, Additive combinatorics, 105 (2006), Cambridge University Press, Cambridge Zbl1127.11002MR2289012
  21. R. C. Vaughan, The Hardy-Littlewood method, 125 (1997), Cambridge University Press, Cambridge Zbl0868.11046MR1435742
  22. Robert-C. Vaughan, Sommes trigonométriques sur les nombres premiers, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), A981-A983 Zbl0374.10025MR498434
  23. I. M. Vinogradov, Some theorems concerning the primes, Mat. Sbornik. N.S. 2 (1937), 179-195 Zbl0017.19803

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.