Quadratic uniformity of the Möbius function
Ben Green[1]; Terence Tao[2]
- [1] Centre for Mathematical Sciences Wilberforce Road Cambridge CB3 0WA (England)
- [2] UCLA Department of Mathematics Los Angeles CA 90095-1596 (USA)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 6, page 1863-1935
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGreen, Ben, and Tao, Terence. "Quadratic uniformity of the Möbius function." Annales de l’institut Fourier 58.6 (2008): 1863-1935. <http://eudml.org/doc/10365>.
@article{Green2008,
abstract = {We prove the “Möbius and Nilsequences Conjecture” for nilsystems of step 1 and 2. This paper forms a part of our program to generalise the Hardy-Littlewood method so as to handle systems of linear equations in primes.},
affiliation = {Centre for Mathematical Sciences Wilberforce Road Cambridge CB3 0WA (England); UCLA Department of Mathematics Los Angeles CA 90095-1596 (USA)},
author = {Green, Ben, Tao, Terence},
journal = {Annales de l’institut Fourier},
keywords = {Quadratic uniformity; Möbius function; quadratic uniformity; Gowers inverse conjectures},
language = {eng},
number = {6},
pages = {1863-1935},
publisher = {Association des Annales de l’institut Fourier},
title = {Quadratic uniformity of the Möbius function},
url = {http://eudml.org/doc/10365},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Green, Ben
AU - Tao, Terence
TI - Quadratic uniformity of the Möbius function
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 6
SP - 1863
EP - 1935
AB - We prove the “Möbius and Nilsequences Conjecture” for nilsystems of step 1 and 2. This paper forms a part of our program to generalise the Hardy-Littlewood method so as to handle systems of linear equations in primes.
LA - eng
KW - Quadratic uniformity; Möbius function; quadratic uniformity; Gowers inverse conjectures
UR - http://eudml.org/doc/10365
ER -
References
top- L. Auslander, L. Green, F. Hahn, Flows on homogeneous spaces, (1963), Princeton University Press, Princeton, N.J. Zbl0106.36802
- Yuri Bilu, Structure of sets with small sumset, Astérisque (1999), xi, 77-108 Zbl0946.11004MR1701189
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 1–3, (1998), Springer-Verlag, Berlin Zbl0672.22001MR1728312
- J. Bourgain, On -subsets of squares, Israel J. Math. 67 (1989), 291-311 Zbl0692.43005MR1029904
- Lawrence J. Corwin, Frederick P. Greenleaf, Representations of nilpotent Lie groups and their applications. Part I, 18 (1990), Cambridge University Press, Cambridge Zbl0704.22007MR1070979
- H. Davenport, On some infinite series involving arithmetical functions. II, Quart. J. Math. Oxf. 8 (1937), 313-320 Zbl63.0906.01
- Harold Davenport, Multiplicative number theory, 74 (2000), Springer-Verlag, New York Zbl1002.11001MR1790423
- Hillel Furstenberg, Nonconventional ergodic averages, The legacy of John von Neumann (Hempstead, NY, 1988) 50 (1990), 43-56, Amer. Math. Soc., Providence, RI Zbl0711.28006MR1067751
- W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), 465-588 Zbl1028.11005
- B. J. Green, T. C. Tao, Linear equations in primes Zbl1242.11071
- B. J. Green, T. C. Tao, An inverse theorem for the Gowers -norm, Proc. Edinburgh Math. Soc. 51 (2008), 73-153 Zbl1202.11013MR2391635
- B. J. Green, T. C. Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Math. 167 (2008), 481-547 Zbl1191.11025MR2415379
- Ben Green, Finite field models in additive combinatorics, Surveys in combinatorics 2005 327 (2005), 1-27, Cambridge Univ. Press, Cambridge Zbl1155.11306MR2187732
- L. K. Hua, Some results in the additive prime number theory, Quart. J. Math. Oxford 9 (1938), 68-80 Zbl0018.29404
- Henryk Iwaniec, Emmanuel Kowalski, Analytic number theory, 53 (2004), American Mathematical Society, Providence, RI Zbl1059.11001MR2061214
- A. I. Mal’cev, On a class of homogeneous spaces, Izvestiya Akad. Nauk. SSSR. Ser. Mat. 13 (1949), 9-32
- Hugh L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, 84 (1994), Published for the Conference Board of the Mathematical Sciences, Washington, DC Zbl0814.11001MR1297543
- Imre Z. Ruzsa, On an additive property of squares and primes, Acta Arith. 49 (1988), 281-289 Zbl0636.10042MR932527
- Terence Tao, Arithmetic progressions and the primes, Collect. Math. (2006), 37-88 Zbl1109.11043MR2264205
- Terence Tao, Van Vu, Additive combinatorics, 105 (2006), Cambridge University Press, Cambridge Zbl1127.11002MR2289012
- R. C. Vaughan, The Hardy-Littlewood method, 125 (1997), Cambridge University Press, Cambridge Zbl0868.11046MR1435742
- Robert-C. Vaughan, Sommes trigonométriques sur les nombres premiers, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), A981-A983 Zbl0374.10025MR498434
- I. M. Vinogradov, Some theorems concerning the primes, Mat. Sbornik. N.S. 2 (1937), 179-195 Zbl0017.19803
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.