Intuitionistic logic considered as an extension of classical logic : some critical remarks
Javier Legris; Jorge A. Molina
Philosophia Scientiae (2001)
- Volume: 5, Issue: 2, page 27-50
- ISSN: 1281-2463
Access Full Article
topAbstract
topHow to cite
topLegris, Javier, and Molina, Jorge A.. "Intuitionistic logic considered as an extension of classical logic : some critical remarks." Philosophia Scientiae 5.2 (2001): 27-50. <http://eudml.org/doc/103660>.
@article{Legris2001,
abstract = {In this paper we analyze the consideration of intuitionistic logic as an extension of classical logic. This — at first sight surprising — point of view has been sustained explicitly by Jan Łukasiewicz on the basis of a mapping of classical propositional logic into intuitionistic propositional logic by Kurt Gödel in 1933. Simultaneously with Gödel, Gerhard Gentzen had proposed another mapping of Peano´s arithmetic into Heyting´s arithmetic. We shall discuss these mappings in connection with the problem of determining what are the logical symbols that properly express the idiosyncracy of intuitionistic logic. Many philosophers and logicians do not seem to be sufficiently aware of the difficulties that arise when classical logic is considered as a subsystem of intuitionistic logic. As an outcome of the whole discussion these difficulties will be brought out. The notion of logical translation will play an essential role in the argumentation and some consequences related to the meaning of logical constants will be drawn.},
author = {Legris, Javier, Molina, Jorge A.},
journal = {Philosophia Scientiae},
language = {eng},
number = {2},
pages = {27-50},
publisher = {Éditions Kimé},
title = {Intuitionistic logic considered as an extension of classical logic : some critical remarks},
url = {http://eudml.org/doc/103660},
volume = {5},
year = {2001},
}
TY - JOUR
AU - Legris, Javier
AU - Molina, Jorge A.
TI - Intuitionistic logic considered as an extension of classical logic : some critical remarks
JO - Philosophia Scientiae
PY - 2001
PB - Éditions Kimé
VL - 5
IS - 2
SP - 27
EP - 50
AB - In this paper we analyze the consideration of intuitionistic logic as an extension of classical logic. This — at first sight surprising — point of view has been sustained explicitly by Jan Łukasiewicz on the basis of a mapping of classical propositional logic into intuitionistic propositional logic by Kurt Gödel in 1933. Simultaneously with Gödel, Gerhard Gentzen had proposed another mapping of Peano´s arithmetic into Heyting´s arithmetic. We shall discuss these mappings in connection with the problem of determining what are the logical symbols that properly express the idiosyncracy of intuitionistic logic. Many philosophers and logicians do not seem to be sufficiently aware of the difficulties that arise when classical logic is considered as a subsystem of intuitionistic logic. As an outcome of the whole discussion these difficulties will be brought out. The notion of logical translation will play an essential role in the argumentation and some consequences related to the meaning of logical constants will be drawn.
LA - eng
UR - http://eudml.org/doc/103660
ER -
References
top- [1] Brouwer, Luitzen Egbertus Jan1929.— “Mathematik, Wissenschaft und Sprache”. In Monatsheft für Mathematik und Physik 36, 153-164. Zbl55.0028.04JFM55.0028.04
- [2] Brouwer, Luitzen Egbertus Jan1949.— “Consciousness, Philosophy, and Mathematics”. In Proceedings of the 10th International Congress of Philosophy, Amsterdam 1948. Amsterdam, North-Holland, 1949, 1243-1249. Reprinted in Philosophy of Mathematics. Selected Readings, edited by Paul Benacerraf & Hilary Putnam, 2nd. ed., Cambridge et al., Cambridge University Press. 1983, 90-96.
- [3] Došen, Kosta1993.— “A Historical Introduction to Substructural Logics”. In Substructural Logics edited by Peter Schroeder-Heister and Kosta Došen, Oxford, Clarendon Press, 1-30. Zbl0941.03516MR1283191
- [4] Dummett, Michael1973.— “The Philosophical Basis of Intuitionistic Logic”. In Truth and Other Enigmas by Michael Dummett, Cambridge (Mass.), Harvard University Press, 1978, 215-247.
- [5] Gabbay, Dov M.1981.— Semantical Investigations in Heyting’s Intuitionistic Logic. Dordrecht-Boston-London, Reidel. Zbl0453.03001MR613144
- [6] Gentzen, Gerhard1933.— “On the Relation between Intuitionistic and Classical Arithmetic”. In [Szabo 1969], 53-67.
- [7] Gentzen, Gerhard1936.— “The Consistency of Elementary Number Theory”. In [Szabo 1969], 132-213.
- [8] Glivenko, Valerij Ivanovic1929.— “Sur quelques points de la logique de M. Brouwer”. Acad. Roy. Belg.Bull. Cl.Sci., Ser. 5, 15, 183-188. Zbl55.0030.05JFM55.0030.05
- [9] Gödel, Kurt1933a.— “Zur intuitionistischen Arithmetik und Zahlentheorie”. In Ergebnisse eines mathematischen Kolloquiums, 4, 34-38. Zbl59.0865.03JFM59.0865.03
- [10] Gödel, Kurt1933b.— “Eine Interpretation des intuitionistischen Aussagenkalküls”. In Ergebnisse eines mathematischen Kolloquiums, 4, 39-40. Zbl0007.19303
- [11] Haack, Susan1973.— Deviant Logic. Cambridge, Cambridge, University Press.
- [12] Heyting, Arendt1930.— “Die formalen Regeln der intuitionistischen Logik”. Sitzungsber. preuss. Ak. Wiss. Phys.- Math. Klasse II, 42-56. Zbl56.0823.01JFM56.0823.01
- [13] Heyting, Arendt1956.— Intuitionism. An Introduction. Amsterdam, North-Holland. Zbl0070.00801MR75147
- [14] Herbrand, Jacques1932.— “Sur la non-contradiction de l’arithmetique”. J. reine und angew. Math. 166, 1-8. Zbl0003.04902
- [15] Kleene, Stephen Cole1952.— Introduction to Metamathematics. New York-Toronto, Van Nostrand. MR51790
- [16] Kripke, Saul1965.— “Semantical Analysis of Intuitionistic Logic”. In Formal Systems and Recursive Functions, ed. by J.N. Crossley and M.A.E. Dummett. Amsterdam, North-Holland, 92-130. Zbl0137.00702MR201300
- [17] Legris, Javier1990.— Eine epistemische Interpretation der intuitionistischen Logik. Würzburg, Königshausen & Neumann. Zbl0744.03010
- [18] Lenzen, Wolfgang1991.— “What is (Or at Least Appears to Be) Wrong with Intuitionistic Logic?”. In Advances in Scientific Philosophy. Essays in Honour of Paul Wengartner ed. by G. Schurz & G. Dorn. Amsterdam, Rodopi, 173-186.
- [19] Łukasiewicz, Jan1951.— “On Variable Functors of Propositional Arguments”. In Łukasiewicz 1970], 311-324. Zbl0042.24401
- [20] Łukasiewicz, Jan1952.— “On The Intuitionistic Theory of Deduction”. In [Łukasiewicz 1970], 325-340
- [21] Łukasiewicz, Jan1970.— Selected Works. ed. by L. Borkowski. Amsterdam-London, North-Holland. Zbl0212.00902MR294080
- [22] Prawitz, Dag & P.-E. Malmnäs 1968.— “A Survey of Some Connections Between Classical, Intuitionistic and Minimal Logic”. In Contributions to Mathematical Logic. Proceedings of the Logic Colloquium, Hannover 1966 ed. by H. Arnold Schmidt, Kurt Schütte & H.J. Thiele. Amsterdam, North-Holland, 215-229. Zbl0188.01104MR235991
- [23] Prior, A.N 1962.— Formal Logic. Oxford, at the Clarendon Press. Zbl0124.00205MR131968
- [24] Quine, Willard van Orman1970.— Philosophy of Logic. Englewood Cliffs, N.J., Prentice-Hall.
- [25] Schütte, Kurt1968.— Vollständige Systeme modaler und intuitionistischer Logik. Berlin-Heidelberg-N.York, Springer. Zbl0157.01602MR227002
- [26] Sundholm, Göran1983.— “Systems of Deduction”. In Handbook of Philosophical Logic, vol. I, ed. by Dov. Gabbay and Franz Guenther, Dordrecht, Reidel, 133-188. Zbl0875.03039
- [27] Szabo, M.E.1969.— The Collected Papers of Gerhard Gentzen. Amsterdam-London, North-Holland. Zbl0209.30001MR262050
- [28] Troelstra, Anne S.1969.— Principles of Intuitionism. Heidelberg-N.York, Springer. MR244003
- [29] Van Dalen, Dirk 1973.— “Lectures on Intuitionism”. In Cambridge Summer School in Mathematical Logic ed. by A.R.D. Mathias and H. Rogers. Berlin-Heidelberg-New York, Springer, 1-94. Zbl0272.02035MR337502
- [30] Wójcicki, Rizsard1988.— Theory of Logical Calculi. Basic Theory of Consequence Operations. Dordrecht-Boston-London, Kluwer. Zbl0682.03001MR1009788
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.