Some additive applications of the isoperimetric approach

Yahya O. Hamidoune[1]

  • [1] Université Paris 06 UPMC E. Combinatoire 4, place Jussieu 75005 Paris (France)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 6, page 2007-2036
  • ISSN: 0373-0956

Abstract

top
Let G be a group and let X be a finite subset. The isoperimetric method investigates the objective function | ( X B ) X | , defined on the subsets X with | X | k and | G ( X B ) | k , where X B is the product of X by B .In this paper we present all the basic facts about the isoperimetric method. We improve some of our previous results and obtain generalizations and short proofs for several known results. We also give some new applications.Some of the results obtained here will be used in coming papers to improve Kempermann structure Theory.

How to cite

top

Hamidoune, Yahya O.. "Some additive applications of the isoperimetric approach." Annales de l’institut Fourier 58.6 (2008): 2007-2036. <http://eudml.org/doc/10368>.

@article{Hamidoune2008,
abstract = {Let $G$ be a group and let $X$ be a finite subset. The isoperimetric method investigates the objective function $|(XB)\setminus X|$, defined on the subsets $X$ with $|X|\ge k$ and $|G\setminus (XB)|\ge k$, where $XB$ is the product of $X$ by $B$.In this paper we present all the basic facts about the isoperimetric method. We improve some of our previous results and obtain generalizations and short proofs for several known results. We also give some new applications.Some of the results obtained here will be used in coming papers to improve Kempermann structure Theory.},
affiliation = {Université Paris 06 UPMC E. Combinatoire 4, place Jussieu 75005 Paris (France)},
author = {Hamidoune, Yahya O.},
journal = {Annales de l’institut Fourier},
keywords = {Addition theorem; Cayley graph; inverse additive theory; addition theorem},
language = {eng},
number = {6},
pages = {2007-2036},
publisher = {Association des Annales de l’institut Fourier},
title = {Some additive applications of the isoperimetric approach},
url = {http://eudml.org/doc/10368},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Hamidoune, Yahya O.
TI - Some additive applications of the isoperimetric approach
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 6
SP - 2007
EP - 2036
AB - Let $G$ be a group and let $X$ be a finite subset. The isoperimetric method investigates the objective function $|(XB)\setminus X|$, defined on the subsets $X$ with $|X|\ge k$ and $|G\setminus (XB)|\ge k$, where $XB$ is the product of $X$ by $B$.In this paper we present all the basic facts about the isoperimetric method. We improve some of our previous results and obtain generalizations and short proofs for several known results. We also give some new applications.Some of the results obtained here will be used in coming papers to improve Kempermann structure Theory.
LA - eng
KW - Addition theorem; Cayley graph; inverse additive theory; addition theorem
UR - http://eudml.org/doc/10368
ER -

References

top
  1. Z. Arad, M. Muzychuk, Order evaluation of products of subsets in finite groups and its applications. II., Trans. Amer. Math. Soc. 349 (1997), 4401-4414 Zbl0895.20022MR1407477
  2. E. Balandraud, Un nouveau point de vue isopérimétrique appliqué au théorème de Kneser, (2005) 
  3. L. V. Brailowski, G. A. Freiman, On a product of finite subsets in a torsion free group, J. Algebra 130 (1990), 462-476 Zbl0697.20019MR1051314
  4. A. Cauchy, Recherches sur les nombres, J. École polytechnique 9 (1813), 99-116 
  5. S. Chowla, A theorem on the addition of residue classes: applications to the number Γ ( k ) in Waring’s problem, Proc. Indian Acad. Sc. 2 (1935), 242-243 Zbl0012.24701
  6. H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935), 30-32 Zbl0010.38905
  7. J. M. Deshouillers, G. A. Freiman, A step beyond Kneser’s Theorem, Proc. London Math. Soc. 86 (2003), 1-28 Zbl1032.11009
  8. G. T. Diderrich, On Kneser’s addition theorem in groups, Proc. Amer. Math. Soc. (1973), 443-451 Zbl0266.20041
  9. G. A. Dirac, Extensions of Menger’s theorem, J. Lond. Math. Soc. 38 (1963) Zbl0112.38606
  10. J. Dixmier, Proof of a conjecture by Erdös, Graham concerning the problem of Frobenius, J. number Theory 34 (1990), 198-209 Zbl0695.10012MR1042493
  11. F. J. Dyson, A theorem on the densities of sets of integers, J. London Math. Soc. 20 (1945), 8-14 Zbl0061.07408MR15074
  12. P. Erdős, H. Heilbronn, On the Addition of residue classes mod p , Acta Arith. 9 (1964), 149-159 Zbl0156.04801MR166186
  13. B. Green, I. Z. Ruzsa, Sets with small sumset and rectification, Bull. London Math. Soc. 38 (2006), 43-52 Zbl1155.11307MR2201602
  14. Y. O. Hamidoune, Beyond Kemperman’s Structure Theory: The isoperimetric approach 
  15. Y. O. Hamidoune, Sur les atomes d’un graphe orienté, C.R. Acad. Sc. Paris A 284 (1977), 1253-1256 Zbl0352.05035
  16. Y. O. Hamidoune, An application of connectivity theory in graphs to factorizations of elements in groups, Europ. J. of Combinatorics 2 (1981), 349-355 Zbl0473.05032MR638410
  17. Y. O. Hamidoune, Quelques problèmes de connexité dans les graphes orientés, J. Comb. Theory B 30 (1981), 1-10 Zbl0475.05039MR609588
  18. Y. O. Hamidoune, On the connectivity of Cayley digraphs, Europ. J. Combinatorics 5 (1984), 309-312 Zbl0561.05028MR782052
  19. Y. O. Hamidoune, On a subgroup contained in words with a bounded length, Discrete Math. 103 (1992), 171-176 Zbl0773.20004MR1171314
  20. Y. O. Hamidoune, An isoperimetric method in additive theory, J. Algebra 179 (1996), 622-630 Zbl0842.20029MR1367866
  21. Y. O. Hamidoune, On subsets with a small sum in abelian groups I: The Vosper property, Europ. J. of Combinatorics 18 (1997), 541-556 Zbl0883.05065MR1455186
  22. Y. O. Hamidoune, On small subset product in a group. Structure Theory of set-addition, Astérisque 258 (1999), 281-308 Zbl0945.20011MR1701204
  23. Y. O. Hamidoune, Some results in Additive number Theory I: The critical pair Theory, Acta Arith. 96 (2000), 97-119 Zbl0985.11011MR1814447
  24. Y. O. Hamidoune, Hyper-atoms and the Kemperman’s critical pair Theory, (2007) 
  25. Y. O. Hamidoune, Ø. J. Rødseth, On bases for σ -finite groups, Math. Sc. 78 (1996), 246-254 Zbl0877.11007MR1414651
  26. Y. O. Hamidoune, Ø. J. Rødseth, An inverse theorem modulo p , Acta Arithmetica 92 (2000), 251-262 Zbl0945.11003MR1752029
  27. Y. O. Hamidoune, O. Serra, G. Zémor, On the critical pair theory in Abelian groups: Beyond Chowla’s Theorem, (2006) Zbl1192.11071
  28. Y. O. Hamidoune, O. Serra, G. Zémor, On the critical pair theory in / p , Acta Arith. 121 (2006), 99-115 Zbl1147.11060MR2216136
  29. N. Hegyvári, On iterated difference sets in groups, Period. Math. Hungar. 43 (2001), 105-110 Zbl0980.11016MR1830569
  30. R. Jin, Solution to the inverse problem for upper asymptotic density, J. Reine Angew. Math. 595 (2006), 121-165 Zbl1138.11045MR2244800
  31. V. Jungić, J. Licht, M. Mahdian, J. Nešetřil, R. Jaroslav, R. Radoičić, Rainbow arithmetic progressions and anti-Ramsey results. Special issue on Ramsey theory, Combin. Probab. Comput. 12 (2003), 599-620 Zbl1128.11305MR2037073
  32. G. Károlyi, Cauchy-Davenport theorem in group extensions, Enseign. Math. (2)51 (2005), 239-254 Zbl1111.20026MR2214888
  33. J. H. B. Kemperman, On complexes in a semigroup, Nederl. Akad. Wetensch. Proc. Ser. A 59 (1956), 247-254 Zbl0072.25605MR85263
  34. J. H. B. Kemperman, On small sumsets in Abelian groups, Acta Math. 103 (1960), 66-88 Zbl0108.25704MR110747
  35. M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen, Math. Z. 58 (1953), 459-484 Zbl0051.28104MR56632
  36. M. Kneser, Summenmengen in lokalkompakten abelesche Gruppen, Math. Zeit. 66 (1956), 88-110 Zbl0073.01702MR81438
  37. H. B. Mann, An addition theorem for sets of elements of an Abelian group, Proc. Amer. Math. Soc. 4 (1953) Zbl0050.25703MR55334
  38. H. B. Mann, Addition Theorems, (1976), R.E. Krieger, New York Zbl0189.29701MR424744
  39. K. Menger, Zur allgemeinen Kurventhoerie, Fund. Math. 10 Karl (1927), 96-115 
  40. M. B. Nathanson, Additive Number Theory. Inverse problems and the geometry of sumsets, Grad. Texts in Math. 165 (1996), Springer Zbl0859.11003MR1477155
  41. N. Nikolov, D. Segal, On finitely generated profinite groups. I. Strong completeness and uniform bounds, Ann. of Math. (2) 165 (2007), 171-238 Zbl1126.20018MR2276769
  42. N. Nikolov, D. Segal, On finitely generated profinite groups. II. Products in quasisimple groups, Ann. of Math. (2) 165 (2007), 239-273 Zbl1126.20018MR2276770
  43. J. E. Olson, Sums of sets of group elements, Acta Arith. 28 (1975/76), 147-156 Zbl0318.10035MR382215
  44. J. E. Olson, On the sum of two sets in a group, J. Number Theory 18 (1984), 110-120 Zbl0524.10043MR734442
  45. J. E. Olson, On the symmetric difference of two sets in a group, Europ. J. Combinatorics (1986), 43-54 Zbl0597.05012MR850143
  46. A. Plagne, ( k , l ) -free sets in / p are arithmetic progressions, Bull. Austral. Math. Soc. 65 (2002), 137-144 Zbl1034.11057MR1889388
  47. L. Pyber, Bounded generation and subgroup growth, Bull. London Math. Soc. 34 (2002), 55-60 Zbl1041.20016MR1866428
  48. Ø. J. Rødseth, Two remarks on linear forms in non-negative integers, Math. Scand. 51 (1982), 193-198 Zbl0503.10035MR690524
  49. I. Ruzsa, An application of graph theory to additive number theory, Scientia, Ser. A 3 (1989) Zbl0743.05052MR2314377
  50. O. Serra, An isoperimetric method for the small sumset problem, Surveys in combinatorics 327 (2005), 119-152, Cambridge Univ. Press, Cambridge Zbl1155.11309MR2187737
  51. O. Serra, G. Zémor, On a generalization of a theorem by Vosper, Integers (2000) Zbl0953.11031MR1771980
  52. J. C. Shepherdson, On the addition of elements of a sequence, J. London Math Soc. 22 (1947), 85-88 Zbl0029.34402MR22866
  53. E. Szemerédi, On a conjecture of Erdös and Heilbronn, Acta Arithmetica 17 (1970), 227-229 Zbl0222.10055MR268159
  54. T. Tao, V. H. Vu, Additive Combinatorics, Cambridge Studies in Advanced Mathematics 105 (2006), Cambridge University Press Zbl1127.11002MR2289012
  55. G. Vosper, Addendum to: The critical pairs of subsets of a group of prime order, J. London Math. Soc. 31 (1956), 280-282 Zbl0072.03402MR78368
  56. G. Vosper, The critical pairs of subsets of a group of prime order, J. London Math. Soc. 31 (1956), 200-205 Zbl0072.03402MR77555
  57. G. Zémor, On positive and negative atoms of Cayley digraphs, Discrete Appl. Math. 23 (1989), 193-195 Zbl0674.05032MR996549

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.