Some additive applications of the isoperimetric approach
- [1] Université Paris 06 UPMC E. Combinatoire 4, place Jussieu 75005 Paris (France)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 6, page 2007-2036
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHamidoune, Yahya O.. "Some additive applications of the isoperimetric approach." Annales de l’institut Fourier 58.6 (2008): 2007-2036. <http://eudml.org/doc/10368>.
@article{Hamidoune2008,
abstract = {Let $G$ be a group and let $X$ be a finite subset. The isoperimetric method investigates the objective function $|(XB)\setminus X|$, defined on the subsets $X$ with $|X|\ge k$ and $|G\setminus (XB)|\ge k$, where $XB$ is the product of $X$ by $B$.In this paper we present all the basic facts about the isoperimetric method. We improve some of our previous results and obtain generalizations and short proofs for several known results. We also give some new applications.Some of the results obtained here will be used in coming papers to improve Kempermann structure Theory.},
affiliation = {Université Paris 06 UPMC E. Combinatoire 4, place Jussieu 75005 Paris (France)},
author = {Hamidoune, Yahya O.},
journal = {Annales de l’institut Fourier},
keywords = {Addition theorem; Cayley graph; inverse additive theory; addition theorem},
language = {eng},
number = {6},
pages = {2007-2036},
publisher = {Association des Annales de l’institut Fourier},
title = {Some additive applications of the isoperimetric approach},
url = {http://eudml.org/doc/10368},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Hamidoune, Yahya O.
TI - Some additive applications of the isoperimetric approach
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 6
SP - 2007
EP - 2036
AB - Let $G$ be a group and let $X$ be a finite subset. The isoperimetric method investigates the objective function $|(XB)\setminus X|$, defined on the subsets $X$ with $|X|\ge k$ and $|G\setminus (XB)|\ge k$, where $XB$ is the product of $X$ by $B$.In this paper we present all the basic facts about the isoperimetric method. We improve some of our previous results and obtain generalizations and short proofs for several known results. We also give some new applications.Some of the results obtained here will be used in coming papers to improve Kempermann structure Theory.
LA - eng
KW - Addition theorem; Cayley graph; inverse additive theory; addition theorem
UR - http://eudml.org/doc/10368
ER -
References
top- Z. Arad, M. Muzychuk, Order evaluation of products of subsets in finite groups and its applications. II., Trans. Amer. Math. Soc. 349 (1997), 4401-4414 Zbl0895.20022MR1407477
- E. Balandraud, Un nouveau point de vue isopérimétrique appliqué au théorème de Kneser, (2005)
- L. V. Brailowski, G. A. Freiman, On a product of finite subsets in a torsion free group, J. Algebra 130 (1990), 462-476 Zbl0697.20019MR1051314
- A. Cauchy, Recherches sur les nombres, J. École polytechnique 9 (1813), 99-116
- S. Chowla, A theorem on the addition of residue classes: applications to the number in Waring’s problem, Proc. Indian Acad. Sc. 2 (1935), 242-243 Zbl0012.24701
- H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935), 30-32 Zbl0010.38905
- J. M. Deshouillers, G. A. Freiman, A step beyond Kneser’s Theorem, Proc. London Math. Soc. 86 (2003), 1-28 Zbl1032.11009
- G. T. Diderrich, On Kneser’s addition theorem in groups, Proc. Amer. Math. Soc. (1973), 443-451 Zbl0266.20041
- G. A. Dirac, Extensions of Menger’s theorem, J. Lond. Math. Soc. 38 (1963) Zbl0112.38606
- J. Dixmier, Proof of a conjecture by Erdös, Graham concerning the problem of Frobenius, J. number Theory 34 (1990), 198-209 Zbl0695.10012MR1042493
- F. J. Dyson, A theorem on the densities of sets of integers, J. London Math. Soc. 20 (1945), 8-14 Zbl0061.07408MR15074
- P. Erdős, H. Heilbronn, On the Addition of residue classes mod , Acta Arith. 9 (1964), 149-159 Zbl0156.04801MR166186
- B. Green, I. Z. Ruzsa, Sets with small sumset and rectification, Bull. London Math. Soc. 38 (2006), 43-52 Zbl1155.11307MR2201602
- Y. O. Hamidoune, Beyond Kemperman’s Structure Theory: The isoperimetric approach
- Y. O. Hamidoune, Sur les atomes d’un graphe orienté, C.R. Acad. Sc. Paris A 284 (1977), 1253-1256 Zbl0352.05035
- Y. O. Hamidoune, An application of connectivity theory in graphs to factorizations of elements in groups, Europ. J. of Combinatorics 2 (1981), 349-355 Zbl0473.05032MR638410
- Y. O. Hamidoune, Quelques problèmes de connexité dans les graphes orientés, J. Comb. Theory B 30 (1981), 1-10 Zbl0475.05039MR609588
- Y. O. Hamidoune, On the connectivity of Cayley digraphs, Europ. J. Combinatorics 5 (1984), 309-312 Zbl0561.05028MR782052
- Y. O. Hamidoune, On a subgroup contained in words with a bounded length, Discrete Math. 103 (1992), 171-176 Zbl0773.20004MR1171314
- Y. O. Hamidoune, An isoperimetric method in additive theory, J. Algebra 179 (1996), 622-630 Zbl0842.20029MR1367866
- Y. O. Hamidoune, On subsets with a small sum in abelian groups I: The Vosper property, Europ. J. of Combinatorics 18 (1997), 541-556 Zbl0883.05065MR1455186
- Y. O. Hamidoune, On small subset product in a group. Structure Theory of set-addition, Astérisque 258 (1999), 281-308 Zbl0945.20011MR1701204
- Y. O. Hamidoune, Some results in Additive number Theory I: The critical pair Theory, Acta Arith. 96 (2000), 97-119 Zbl0985.11011MR1814447
- Y. O. Hamidoune, Hyper-atoms and the Kemperman’s critical pair Theory, (2007)
- Y. O. Hamidoune, Ø. J. Rødseth, On bases for -finite groups, Math. Sc. 78 (1996), 246-254 Zbl0877.11007MR1414651
- Y. O. Hamidoune, Ø. J. Rødseth, An inverse theorem modulo , Acta Arithmetica 92 (2000), 251-262 Zbl0945.11003MR1752029
- Y. O. Hamidoune, O. Serra, G. Zémor, On the critical pair theory in Abelian groups: Beyond Chowla’s Theorem, (2006) Zbl1192.11071
- Y. O. Hamidoune, O. Serra, G. Zémor, On the critical pair theory in , Acta Arith. 121 (2006), 99-115 Zbl1147.11060MR2216136
- N. Hegyvári, On iterated difference sets in groups, Period. Math. Hungar. 43 (2001), 105-110 Zbl0980.11016MR1830569
- R. Jin, Solution to the inverse problem for upper asymptotic density, J. Reine Angew. Math. 595 (2006), 121-165 Zbl1138.11045MR2244800
- V. Jungić, J. Licht, M. Mahdian, J. Nešetřil, R. Jaroslav, R. Radoičić, Rainbow arithmetic progressions and anti-Ramsey results. Special issue on Ramsey theory, Combin. Probab. Comput. 12 (2003), 599-620 Zbl1128.11305MR2037073
- G. Károlyi, Cauchy-Davenport theorem in group extensions, Enseign. Math. (2)51 (2005), 239-254 Zbl1111.20026MR2214888
- J. H. B. Kemperman, On complexes in a semigroup, Nederl. Akad. Wetensch. Proc. Ser. A 59 (1956), 247-254 Zbl0072.25605MR85263
- J. H. B. Kemperman, On small sumsets in Abelian groups, Acta Math. 103 (1960), 66-88 Zbl0108.25704MR110747
- M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen, Math. Z. 58 (1953), 459-484 Zbl0051.28104MR56632
- M. Kneser, Summenmengen in lokalkompakten abelesche Gruppen, Math. Zeit. 66 (1956), 88-110 Zbl0073.01702MR81438
- H. B. Mann, An addition theorem for sets of elements of an Abelian group, Proc. Amer. Math. Soc. 4 (1953) Zbl0050.25703MR55334
- H. B. Mann, Addition Theorems, (1976), R.E. Krieger, New York Zbl0189.29701MR424744
- K. Menger, Zur allgemeinen Kurventhoerie, Fund. Math. 10 Karl (1927), 96-115
- M. B. Nathanson, Additive Number Theory. Inverse problems and the geometry of sumsets, Grad. Texts in Math. 165 (1996), Springer Zbl0859.11003MR1477155
- N. Nikolov, D. Segal, On finitely generated profinite groups. I. Strong completeness and uniform bounds, Ann. of Math. (2) 165 (2007), 171-238 Zbl1126.20018MR2276769
- N. Nikolov, D. Segal, On finitely generated profinite groups. II. Products in quasisimple groups, Ann. of Math. (2) 165 (2007), 239-273 Zbl1126.20018MR2276770
- J. E. Olson, Sums of sets of group elements, Acta Arith. 28 (1975/76), 147-156 Zbl0318.10035MR382215
- J. E. Olson, On the sum of two sets in a group, J. Number Theory 18 (1984), 110-120 Zbl0524.10043MR734442
- J. E. Olson, On the symmetric difference of two sets in a group, Europ. J. Combinatorics (1986), 43-54 Zbl0597.05012MR850143
- A. Plagne, -free sets in are arithmetic progressions, Bull. Austral. Math. Soc. 65 (2002), 137-144 Zbl1034.11057MR1889388
- L. Pyber, Bounded generation and subgroup growth, Bull. London Math. Soc. 34 (2002), 55-60 Zbl1041.20016MR1866428
- Ø. J. Rødseth, Two remarks on linear forms in non-negative integers, Math. Scand. 51 (1982), 193-198 Zbl0503.10035MR690524
- I. Ruzsa, An application of graph theory to additive number theory, Scientia, Ser. A 3 (1989) Zbl0743.05052MR2314377
- O. Serra, An isoperimetric method for the small sumset problem, Surveys in combinatorics 327 (2005), 119-152, Cambridge Univ. Press, Cambridge Zbl1155.11309MR2187737
- O. Serra, G. Zémor, On a generalization of a theorem by Vosper, Integers (2000) Zbl0953.11031MR1771980
- J. C. Shepherdson, On the addition of elements of a sequence, J. London Math Soc. 22 (1947), 85-88 Zbl0029.34402MR22866
- E. Szemerédi, On a conjecture of Erdös and Heilbronn, Acta Arithmetica 17 (1970), 227-229 Zbl0222.10055MR268159
- T. Tao, V. H. Vu, Additive Combinatorics, Cambridge Studies in Advanced Mathematics 105 (2006), Cambridge University Press Zbl1127.11002MR2289012
- G. Vosper, Addendum to: The critical pairs of subsets of a group of prime order, J. London Math. Soc. 31 (1956), 280-282 Zbl0072.03402MR78368
- G. Vosper, The critical pairs of subsets of a group of prime order, J. London Math. Soc. 31 (1956), 200-205 Zbl0072.03402MR77555
- G. Zémor, On positive and negative atoms of Cayley digraphs, Discrete Appl. Math. 23 (1989), 193-195 Zbl0674.05032MR996549
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.