Integral representation of the n -th derivative in de Branges-Rovnyak spaces and the norm convergence of its reproducing kernel

Emmanuel Fricain[1]; Javad Mashreghi[2]

  • [1] Université Lyon 1 Institut Camille Jordan CNRS UMR 5208 43, boulevard du 11 Novembre 1918 69622 Villeurbanne (France)
  • [2] Université Laval Département de Mathématiques et de Statistique Québec, QC 61VOA6 (Canada)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 6, page 2113-2135
  • ISSN: 0373-0956

Abstract

top
In this paper, we give an integral representation for the boundary values of derivatives of functions of the de Branges–Rovnyak spaces ( b ) , where b is in the unit ball of H ( + ) . In particular, we generalize a result of Ahern–Clark obtained for functions of the model spaces K b , where b is an inner function. Using hypergeometric series, we obtain a nontrivial formula of combinatorics for sums of binomial coefficients. Then we apply this formula to show the norm convergence of reproducing kernel k ω , n b of evaluation of the n -th derivative of elements of ( b ) at the point ω as it tends radially to a point of the real axis.

How to cite

top

Fricain, Emmanuel, and Mashreghi, Javad. "Integral representation of the $n$-th derivative in de Branges-Rovnyak spaces and the norm convergence of its reproducing kernel." Annales de l’institut Fourier 58.6 (2008): 2113-2135. <http://eudml.org/doc/10372>.

@article{Fricain2008,
abstract = {In this paper, we give an integral representation for the boundary values of derivatives of functions of the de Branges–Rovnyak spaces $\mathcal\{H\}(b)$, where $b$ is in the unit ball of $H^\infty (\mathbb\{C\}_+)$. In particular, we generalize a result of Ahern–Clark obtained for functions of the model spaces $K_b$, where $b$ is an inner function. Using hypergeometric series, we obtain a nontrivial formula of combinatorics for sums of binomial coefficients. Then we apply this formula to show the norm convergence of reproducing kernel $k_\{\omega ,n\}^b$ of evaluation of the $n$-th derivative of elements of $\mathcal\{H\}(b)$ at the point $\omega $ as it tends radially to a point of the real axis.},
affiliation = {Université Lyon 1 Institut Camille Jordan CNRS UMR 5208 43, boulevard du 11 Novembre 1918 69622 Villeurbanne (France); Université Laval Département de Mathématiques et de Statistique Québec, QC 61VOA6 (Canada)},
author = {Fricain, Emmanuel, Mashreghi, Javad},
journal = {Annales de l’institut Fourier},
keywords = {De Branges-Rovnyak spaces; model subspaces of $H^2$; integral representation; hypergeometric functions; de Branges-Rovnyak spaces; model subspaces of },
language = {eng},
number = {6},
pages = {2113-2135},
publisher = {Association des Annales de l’institut Fourier},
title = {Integral representation of the $n$-th derivative in de Branges-Rovnyak spaces and the norm convergence of its reproducing kernel},
url = {http://eudml.org/doc/10372},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Fricain, Emmanuel
AU - Mashreghi, Javad
TI - Integral representation of the $n$-th derivative in de Branges-Rovnyak spaces and the norm convergence of its reproducing kernel
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 6
SP - 2113
EP - 2135
AB - In this paper, we give an integral representation for the boundary values of derivatives of functions of the de Branges–Rovnyak spaces $\mathcal{H}(b)$, where $b$ is in the unit ball of $H^\infty (\mathbb{C}_+)$. In particular, we generalize a result of Ahern–Clark obtained for functions of the model spaces $K_b$, where $b$ is an inner function. Using hypergeometric series, we obtain a nontrivial formula of combinatorics for sums of binomial coefficients. Then we apply this formula to show the norm convergence of reproducing kernel $k_{\omega ,n}^b$ of evaluation of the $n$-th derivative of elements of $\mathcal{H}(b)$ at the point $\omega $ as it tends radially to a point of the real axis.
LA - eng
KW - De Branges-Rovnyak spaces; model subspaces of $H^2$; integral representation; hypergeometric functions; de Branges-Rovnyak spaces; model subspaces of
UR - http://eudml.org/doc/10372
ER -

References

top
  1. P. R. Ahern, D. N. Clark, Radial limits and invariant subspaces, Amer. J. Math. 92 (1970), 332-342 Zbl0197.39202MR262511
  2. P. R. Ahern, D. N. Clark, Radial n th derivatives of Blaschke products, Math. Scand. 28 (1971), 189-201 Zbl0225.30037MR318495
  3. J. M. Anderson, J. Rovnyak, On generalized Schwarz-Pick estimates, Mathematika 53 (2006), 161-168 (2007) Zbl1120.30001MR2304058
  4. George E. Andrews, Richard Askey, Ranjan Roy, Special functions, 71 (1999), Cambridge University Press, Cambridge Zbl0920.33001MR1688958
  5. A. D. Baranov, Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings, J. Funct. Anal. 223 (2005), 116-146 Zbl1082.46019MR2139883
  6. Vladimir Bolotnikov, Alexander Kheifets, A higher order analogue of the Carathéodory-Julia theorem, J. Funct. Anal. 237 (2006), 350-371 Zbl1102.30028MR2239269
  7. Louis de Branges, James Rovnyak, Canonical models in quantum scattering theory, Perturbation Theory and its Applications in Quantum Mechanics (Proc. Adv. Sem. Math. Res. Center, U.S. Army, Theoret. Chem. Inst., Univ. of Wisconsin, Madison, Wis., 1965) (1966), 295-392, Wiley, New York Zbl0203.45101MR244795
  8. Louis de Branges, James Rovnyak, Square summable power series, (1966), Holt, Rinehart and Winston, New York Zbl0153.39603MR215065
  9. Peter L. Duren, Theory of H p spaces, (1970), Academic Press, New York Zbl0215.20203MR268655
  10. Konstantin M. Dyakonov, Entire functions of exponential type and model subspaces in H p , Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 190 (1991), 81-100, 186 Zbl0788.30024MR1111913
  11. Konstantin M. Dyakonov, Differentiation in star-invariant subspaces. I. Boundedness and compactness, J. Funct. Anal. 192 (2002), 364-386 Zbl1011.47005MR1923406
  12. P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), 335-400 Zbl37.0283.01MR1555035
  13. E. Fricain, Bases of reproducing kernels in de Branges spaces, J. Funct. Anal. 226 (2005), 373-405 Zbl1086.46018MR2159461
  14. E. Fricain, J. Mashreghi, Boundary behavior of functions of the de Branges-Rovnyak spaces Zbl1159.46307
  15. Andreas Hartmann, Donald Sarason, Kristian Seip, Surjective Toeplitz operators, Acta Sci. Math. (Szeged) 70 (2004), 609-621 Zbl1076.30038MR2107530
  16. Henry Helson, Lectures on invariant subspaces, (1964), Academic Press, New York Zbl0119.11303MR171178
  17. Michael T. Jury, Reproducing kernels, de Branges-Rovnyak spaces, and norms of weighted composition operators, Proc. Amer. Math. Soc. 135 (2007), 3669-3675 (electronic) Zbl1137.47019MR2336583
  18. Donald Sarason, Sub-Hardy Hilbert spaces in the unit disk, (1994), John Wiley & Sons Inc., New York Zbl1253.30002MR1289670
  19. Jonathan E. Shapiro, Relative angular derivatives, J. Operator Theory 46 (2001), 265-280 Zbl1002.46021MR1870407
  20. Jonathan E. Shapiro, More relative angular derivatives, J. Operator Theory 49 (2003), 85-97 Zbl1030.46026MR1978323
  21. Lucy Joan Slater, Generalized hypergeometric functions, (1966), Cambridge University Press, Cambridge Zbl0135.28101MR201688

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.