Psychologism and the cognitive foundations of mathematics

Christophe Heintz

Philosophia Scientiae (2005)

  • Volume: 9, Issue: 2, page 41-59
  • ISSN: 1281-2463

How to cite

top

Heintz, Christophe. "Psychologism and the cognitive foundations of mathematics." Philosophia Scientiae 9.2 (2005): 41-59. <http://eudml.org/doc/103759>.

@article{Heintz2005,
author = {Heintz, Christophe},
journal = {Philosophia Scientiae},
language = {fre},
number = {2},
pages = {41-59},
publisher = {Éditions Kimé},
title = {Psychologism and the cognitive foundations of mathematics},
url = {http://eudml.org/doc/103759},
volume = {9},
year = {2005},
}

TY - JOUR
AU - Heintz, Christophe
TI - Psychologism and the cognitive foundations of mathematics
JO - Philosophia Scientiae
PY - 2005
PB - Éditions Kimé
VL - 9
IS - 2
SP - 41
EP - 59
LA - fre
UR - http://eudml.org/doc/103759
ER -

References

top
  1. [1] Bloor, D.1991.— Knowledge and Social Imagery, 2nd ed., Chicago : University of Chicago Press. 
  2. [2] Bloor, D.1994.— What Can the Sociologist of Knowledge Say About 2+2=4 ? in P. Ernest (ed.), Mathematics, Education and Philosphy, London : Falmer, Chapter 2. 
  3. [3] Bloor, D.1997.— Wittgenstein on Rules and Institutions, London : Routledge. 
  4. [4] Dehaene, Stanislas1996.— La Bosse des Maths, Paris : Odile Jacob. 
  5. [5] Engel, P.1989.— La Norme du Vrai, Philosophie de la Logique, Paris : Gallimard. 
  6. [6] Gallistel, C. R., Gelman, R., & Cordes, S.2002.— The cultural and evolutionary history of the real numbers, in S. Levinson & P. Jaisson (Eds.), Culture and evolution, Cambridge, MA : MIT Press. 
  7. [7] Gallistel, C. R., & Gelman, R.2000.— Non-verbal numerical cognition : From reals to integers, Trends in Cognitive Sciences, 4, 59–65. 
  8. [8] Heintz, C.2002.— Can mathematical concepts allow cultural analysis : An illustration, in J. Goggin & M. Burke (eds.), Travelling Concepts II : Frame, Meaning and Metaphor, Amsterdam : ASCA Press. 
  9. [9] Kusch, M.1995.— Psychologism, London : Routledge. 
  10. [10] Johnson-Laird, P.N., & Byrne, R.M.J.1991.— Deduction, Hillsdale, NJ : Lawrence Erlbaum Associates. 
  11. [11] Lakatos, I.1976.— Proofs and Refutations, Cambridge : CUP. Zbl0334.00022MR479916
  12. [12] Lakatos, I.1978.— Cauchy and the continuum : The significance of non-standard analysis for the history and philosophy of mathematics, Mathematics Intelligencer, 1(3), 151–161. Zbl0398.01009MR506188
  13. [13] Macnamara, J.1986.— A Border Dispute, the Place of Logic in Psychology, Cambridge : MIT Press. 
  14. [14] Macnamara, J. & Reyes, G. E. (eds) 1994.— The Logical Foundations of Cognition, New-York : Oxford University Press. MR1380769
  15. [15] Maddy, P.1980.— Perception and mathematical intuition, Philosophical Review, 89, 163–196. 
  16. [16] Maddy, P.1989.— The roots of contemporary Platonism, Journal of Symbolic Logic, 54, 1121–1144. Zbl0706.03001MR1026593
  17. [17] Maddy, P.1990.— Realism in Mathematics, Oxford : Oxford University Press. Zbl0762.00001MR1075998
  18. [18] Maddy, P.1996.— Set theoretic naturalism, Journal of Symbolic Logic, 61, 490–514. Zbl0882.03004MR1394611
  19. [19] Putnam, H.1968.— The Logic of quantum Mechanics, in Mathematics, Matters and Method, Cambridge : Cambridge University Press. L’intelligence dévoile enfin sa vraie nature : toute pensée est un calcul !, Science et Vie, numéro 1013, février 2002. 
  20. [20] Sperber, D.1996.— Explaining culture : A naturalistic approach, Oxford : Blackwell. 

NotesEmbed ?

top

You must be logged in to post comments.