Upsetting the foundations for mathematics
Philosophia Scientiae (2005)
- Volume: 9, Issue: 2, page 5-21
- ISSN: 1281-2463
Access Full Article
topAbstract
topHow to cite
topNeff Stout, Lawrence. "Upsetting the foundations for mathematics." Philosophia Scientiae 9.2 (2005): 5-21. <http://eudml.org/doc/103760>.
@article{NeffStout2005,
abstract = {Starting with a review of the kinds of questions a foundation for mathematics should address, this paper provides a critique of set theoretical foundations, a proposal that multiple interconnected categorical foundations would be an improvement, and a way of recovering set theory within a categorical approach.},
author = {Neff Stout, Lawrence},
journal = {Philosophia Scientiae},
language = {eng},
number = {2},
pages = {5-21},
publisher = {Éditions Kimé},
title = {Upsetting the foundations for mathematics},
url = {http://eudml.org/doc/103760},
volume = {9},
year = {2005},
}
TY - JOUR
AU - Neff Stout, Lawrence
TI - Upsetting the foundations for mathematics
JO - Philosophia Scientiae
PY - 2005
PB - Éditions Kimé
VL - 9
IS - 2
SP - 5
EP - 21
AB - Starting with a review of the kinds of questions a foundation for mathematics should address, this paper provides a critique of set theoretical foundations, a proposal that multiple interconnected categorical foundations would be an improvement, and a way of recovering set theory within a categorical approach.
LA - eng
UR - http://eudml.org/doc/103760
ER -
References
top- [1] Awodey, Steve, Butz, Carsten, Simpson, A. and Streicher, Th. 2002.— Mac Lane set theory. Slides from ASL presentation, personal communication, 2002.
- [2] Bell, J.L.1988.— Toposes and Local Set Theories, Oxford: Oxford U. Press, 1988. Zbl0649.18004MR972257
- [3] Cohen, Paul J.1966.— Set Theory and the Continuum Hypothesis, New York and Amsterdam: Benjamin, 1966. Zbl0182.01301MR232676
- [4] Freyd, Peter1972.— Aspects of topoi, Bulletin of the Australian Mathematical Society, 1972. Zbl0252.18001
- [5] Friedman, Harvey2002.— Re: Fom: {n: n notin f(n)}, e-mail to FOM list, August 30 2002, Archived at: http://www.cs.nyu.edu/pipermail/fom/2002-August/005787.html
- [6] Goldblatt, R.1979.— Topoi: the Categorial Analysis of Logic, Amsterdam, New York, and Oxford: North Holland, 1979. Zbl0528.03039MR551362
- [7] Höhle, Ulrich1991.— Monoidal closed categories, weak topoi and generalized logics, Fuzzy Sets and Systems, 1991. Zbl0734.03035MR1123574
- [8] Jacobs, Bart1999.— Categorical Logic and Type Theory, Studies in Logic and the Foundations of Mathematics, 141, Amsterdam: Elsevier, 1999. Zbl0911.03001MR1674451
- [9] Johnstone, Peter T.1977.— Topos Theory, London, New York, and San Francisco: Academic Press, 1977. Zbl0368.18001MR470019
- [10] Joyal, Andre and Moerdijk, Ieke1995.— Algebraic Set Theory, London Mathematical Society Lecture Notes, Number 220, Cambridge: Cambridge University Press, 1995. Zbl0847.03025
- [11] Kock, Anders1981.— Synthetic Differential Geometry, London Mathematical Society Lecture Notes Series, Number 51 . Cambridge U. Press, 1981. Zbl0466.51008MR649622
- [12] Kock, Anders and Wraith, Gavin C.1971.— Elementary Toposes, in Lecture Notes, Number 30, Aarhus: Aarhus Universitet Matematisk Institut, 1971. Zbl0251.18015MR342578
- [13] Lakov, George and Núñez, Raphael2000.— Where Mathematics Comes From: How the embodied mind brings mathematics into being, New York: Basic Books, 2000. Zbl0987.00003MR1794854
- [14] Lambek, Joachim and Scott, P.J. 1986.— Higher Order Categorical Logic, Cambridge studies in advanced Mathematics, Number 7, Cambridge: Cambridge U. Press, 1986. Zbl0596.03002MR856915
- [15] Lawvere, F.W.1972.— Introduction, Toposes, Algebraic Geometry and Logic, Lecture Notes in Mathematics, Number 274, Berlin, Heidelberg and New York: Springer Verlag, 1972. Zbl0233.00005MR376798
- [16] Mac Lane, Saunders1990.— Mathematics: Form and Function, New York, Berlin, Heidelberg, Tokyo: Springer Verlag, 1990. Zbl0675.00001
- [17] Makkai, Michael1998.— Towards a categorical foundation of mathematics, in Johann A. Makowsky and Elena V. Ravve, (eds.), Logic Colloquium ’95, Lecture Notes in Logic, 11 153–190. Association for Symbolic Logic, Springer Verlag, 1998. Zbl0896.03051MR1678360
- [18] Marquis, Jean-Pierre1995.— Category theory and the foundations of mathematics: philosophical excavations, Synthese, 103(3):421–447, 1995. Zbl1058.00505MR1350266
- [19] Mayberry, John1994.— What is required of a foundation for mathematics, Philosophia Mathematica (3), 2, 16–35, 1994. Zbl0796.03004MR1257682
- [20] Monro, G. P.1986.— Quasitopoi, logic and heyting-valued models, Journal of Pure and Applied Algebra, 42, 141–164, 1986. Zbl0597.18001MR857564
- [21] Penon, Jacques1977.— Sur les quasitopos, Cahiers de Topologie et Géométrie Différentielle, 18, 181–218, 1977. Zbl0401.18002MR480693
- [22] Robinson, Abraham1996.— Non-standard Analysis, revised edition, Princeton Landmarks in Mathematics, Princeton: Princeton U. Press, 1996. Zbl0843.26012MR1373196
- [23] Simpson, Stephen G.1996.— What is foundations of mathematics? On web page at http://www.math.psu.edu/simpson/hierarchy.html, 1996, still active Sept. 9, 2002.
- [24] Stout, Lawrence N.1992.— The logic of unbalanced subobjects in a category with two closed structures, in U. Höhle S.E. Rodabaugh, E.P. Klement, (eds.), Applications of Category Theory to Fuzzy Subsets, Dordrecht, Boston, London: Kluwer, 1991. Zbl0760.03021MR1154569
- [25] Wyler, Oswald1991.— Notes on Topoi and Quasitopoi, Singapore: World Scientific, 1991. Zbl0727.18001MR1094373
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.