Homogeneous bundles and the first eigenvalue of symmetric spaces
Leonardo Biliotti[1]; Alessandro Ghigi[2]
- [1] Università degli Studi di Parma Parma (Italia)
- [2] Università degli Studi di Milano Bicocca Milano (Italia)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 7, page 2315-2331
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBiliotti, Leonardo, and Ghigi, Alessandro. "Homogeneous bundles and the first eigenvalue of symmetric spaces." Annales de l’institut Fourier 58.7 (2008): 2315-2331. <http://eudml.org/doc/10379>.
@article{Biliotti2008,
abstract = {In this note we prove the stability of the Gieseker point of an irreducible homogeneous bundle over a rational homogeneous space. As an application we get a sharp upper estimate for the first eigenvalue of the Laplacian of an arbitrary Kähler metric on a compact Hermitian symmetric spaces of ABCD–type.},
affiliation = {Università degli Studi di Parma Parma (Italia); Università degli Studi di Milano Bicocca Milano (Italia)},
author = {Biliotti, Leonardo, Ghigi, Alessandro},
journal = {Annales de l’institut Fourier},
keywords = {Homogeneous bundles; spectrum of the Laplacian; homogeneous bundle; Gieseker point; compact Hermitian symmetric space},
language = {eng},
number = {7},
pages = {2315-2331},
publisher = {Association des Annales de l’institut Fourier},
title = {Homogeneous bundles and the first eigenvalue of symmetric spaces},
url = {http://eudml.org/doc/10379},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Biliotti, Leonardo
AU - Ghigi, Alessandro
TI - Homogeneous bundles and the first eigenvalue of symmetric spaces
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 7
SP - 2315
EP - 2331
AB - In this note we prove the stability of the Gieseker point of an irreducible homogeneous bundle over a rational homogeneous space. As an application we get a sharp upper estimate for the first eigenvalue of the Laplacian of an arbitrary Kähler metric on a compact Hermitian symmetric spaces of ABCD–type.
LA - eng
KW - Homogeneous bundles; spectrum of the Laplacian; homogeneous bundle; Gieseker point; compact Hermitian symmetric space
UR - http://eudml.org/doc/10379
ER -
References
top- D. N. Akhiezer, Lie group actions in complex analysis, E27 (1995), Friedr. Vieweg & Sohn, Braunschweig Zbl0845.22001MR1334091
- C. Arezzo, A. Ghigi, A. Loi, Stable bundles and the first eigenvalue of the Laplacian, J. Geom. Anal. 17 (2007), 375-386 Zbl1128.58013MR2358762
- R. J. Baston, M. G. Eastwood, The Penrose transform, (1989), The Clarendon Press Oxford University Press, New York Zbl0726.58004MR1038279
- J.-P. Bourguignon, P. Li, S.-T. Yau, Upper bound for the first eigenvalue of algebraic submanifolds, Comment. Math. Helv. 69 (1994), 199-207 Zbl0814.53040MR1282367
- B. Colbois, J. Dodziuk, Riemannian metrics with large , Proc. Amer. Math. Soc. 122 (1994), 905-906 Zbl0820.58056MR1213857
- S. K. Donaldson, P. B. Kronheimer, The geometry of four-manifolds, (1990), Oxford Mathematical Monographs. Oxford: Clarendon Press. ix, 440p., New York Zbl0820.57002MR1079726
- A. El Soufi, S. Ilias, Riemannian manifolds admitting isometric immersions by their first eigenfunctions, Pacific J. Math. 195 (2000), 91-99 Zbl1030.53043MR1781616
- G. Fels, A. Huckleberry, J. A. Wolf, Cycle spaces of flag domains, 245 (2006), Birkhäuser Boston Inc., Boston, MA Zbl1084.22011MR2188135
- A. Futaki, Kähler-Einstein metrics and integral invariants, (1988), Springer-Verlag, Berlin Zbl0646.53045MR947341
- D. Gieseker, On the moduli of vector bundles on an algebraic surface, Ann. of Math. (2) 106 (1977), 45-60 Zbl0381.14003MR466475
- P. Heinzner, A. Huckleberry, Analytic Hilbert quotients, Several complex variables (Berkeley, CA, 1995-1996) 37 (1999), 309-349, Math. Sci. Res. Inst. Publ., Cambridge Univ. Press, Cambridge Zbl0959.32013MR1748608
- P. Heinzner, G. W. Schwarz, Cartan decomposition of the moment map, Math. Ann. 337 (2007), 197-232 Zbl1110.32008MR2262782
- S. Helgason, Differential geometry, Lie groups, and symmetric spaces, 80 (1978), Pure and Applied Mathematic, Academic Press Inc., XV. 628 p., New York Zbl0451.53038MR514561
- J. E. Humphreys, Introduction to Lie algebras and representation theory, 9 (1978), Graduate Texts in Mathematics, Springer-Verlag, New York Zbl0447.17001MR499562
- G. Kempf, L. Ness, The length of vectors in representation spaces, Algebraic geometry. (Proc. Summer Meeting, Copenhagen, 1978) 732 (1979), 233-243, Lecture Notes in Math., Springer, Berlin Zbl0407.22012MR555701
- S. Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan 15 (1987), Princeton University Press, Princeton, NJ Zbl0708.53002MR909698
- S. Kobayashi, T. Nagano, On filtered Lie algebras and geometric structures. II, J. Math. Mech. 14 (1965), 513-521 Zbl0163.28103MR185042
- D. Luna, Sur les orbites fermées des groupes algébriques réductifs, Invent. Math. 16 (1972), 1-5 Zbl0249.14016MR294351
- D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, 34 (1994), Springer-Verlag, Berlin Zbl0797.14004MR1304906
- A. L. Onishchik, È. B. Vinberg, Lie groups and algebraic groups, (1990), Springer Series in Soviet Mathematics, Springer-Verlag, Berlin Zbl0722.22004MR1064110
- G. Ottaviani, Spinor bundles on quadrics, Trans. Amer. Math. Soc. 307 (1988), 301-316 Zbl0657.14006MR936818
- G. Ottaviani, Rational homogeneous varieties, Notes from a course held in Cortona, Italy (1995)
- S. Ramanan, Holomorphic vector bundles on homogeneous spaces, Topology 5 (1966), 159-177 Zbl0138.18602MR190947
- H. Umemura, On a theorem of Ramanan, Nagoya Math. J. 69 (1978), 131-138 Zbl0345.14017MR473243
- X. Wang, Balance point and stability of vector bundles over a projective manifold, Math. Res. Lett. 9(2-3) (2002), 393-411 Zbl1011.32016MR1909652
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.