On the complex bordism of finite complexes
Publications Mathématiques de l'IHÉS (1969)
- Volume: 37, page 117-221
- ISSN: 0073-8301
Access Full Article
topHow to cite
topConner, Pierre E., and Smith, Larry. "On the complex bordism of finite complexes." Publications Mathématiques de l'IHÉS 37 (1969): 117-221. <http://eudml.org/doc/103900>.
@article{Conner1969,
author = {Conner, Pierre E., Smith, Larry},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {topology},
language = {eng},
pages = {117-221},
publisher = {Institut des Hautes Études Scientifiques},
title = {On the complex bordism of finite complexes},
url = {http://eudml.org/doc/103900},
volume = {37},
year = {1969},
}
TY - JOUR
AU - Conner, Pierre E.
AU - Smith, Larry
TI - On the complex bordism of finite complexes
JO - Publications Mathématiques de l'IHÉS
PY - 1969
PB - Institut des Hautes Études Scientifiques
VL - 37
SP - 117
EP - 221
LA - eng
KW - topology
UR - http://eudml.org/doc/103900
ER -
References
top- [1] J.F. ADAMS, The structure and application of the Steenrod algebra, Comment. Math. Helv., 32 (1958), pp. 180-214. Zbl0083.17802MR20 #2711
- [2] J.F. ADAMS, Lectures on generalized cohomology theories, Lectures Notes in Mathematics, 99, Springer Verlag. Zbl0193.51702
- [3] M.F. ATIYAH, Bordism and cobordism, Proc. Camb. Phil. Soc., 57 (1961), pp. 200-208. Zbl0104.17405MR23 #A4150
- [4] M. F. ATIYAH, Vector bundles and the Künneth formula, Topology, 1 (1962), pp. 245-248. Zbl0108.17801MR27 #767
- [5] H. CARTAN and S. EILENBERG, Homological algebra, Princeton University Press, 1956. Zbl0075.24305MR17,1040e
- [6] J. COHEN, Coherent graded rings and stable homotopy theory, Comment. Math. Helv. (to appear). Zbl0176.20903
- [7] P. E. CONNER, Seminar on periodic maps, Lecture Notes in Mathematics, 46, Springer Verlag, 1967. Zbl0168.21201MR36 #7147
- [8] P. E. CONNER and E. E. FLOYD, Differentiable periodic maps, Academic Press-Springer Verlag, New York, 1964. Zbl0125.40103MR31 #750
- [9] P. E. CONNER and E. E. FLOYD, The relation of cobordism to K-theories, Lecture Notes in Mathematics, 28, Springer Verlag, 1966. Zbl0161.42802MR35 #7344
- [10] E. E. FLOYD, Actions of (Zp)k without stationary points (to appear). Zbl0236.57022
- [11] L. HODGKIN, An Equivariant Künneth formula in K-theory, Warwick University preprint.
- [12] D. HUSEMOLLER, Fibres bundles, McGraw Hill, New York, 1966. Zbl0144.44804MR37 #4821
- [13] D. HUSEMOLLER and J. C. MOORE, Foundations of exotically graded algebra (to appear).
- [14] P. S. LANDWEBER, Künneth formulas for bordism theories, Trans. Amer. Math. Soc., 121 (1966), pp. 242-256. Zbl0135.41203MR33 #728
- [15] S. MAC LANE, Homology, Academic Press-Springer Verlag, New York, 1962.
- [16] G. MITCHEL, Thesis, University of Virginia, 1968.
- [17] J. MILNOR and J. C. MOORE, The structure of Hopf algebras, Ann. of Math., 81 (1965), pp. 217-284. Zbl0163.28202MR30 #4259
- [18] J.-P. SERRE, Algèbre locale. Multiplicités, Lecture Notes in Mathematics, 11, Springer-Verlag, 1965. Zbl0142.28603MR34 #1352
- [19] L. SMITH, Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math. Soc., 129 (1967), pp. 58-93. Zbl0177.51402MR35 #7337
- [20] L. SMITH, On the finite generation of .Ω.*(X), J. of Math. and Mechanics, 18 (1969), pp. 1017-1024. Zbl0179.51504MR39 #6300
- [21] E. H. SPANIER, Algebraic topology, McGraw Hill, New York, 1966. Zbl0145.43303MR35 #1007
- [22] R. E. STONG, Notes on cobordism theory, Lecture Notes in Mathematics, Princeton University Press, 1969. Zbl0181.26604
- [23] H. TODA, Composition methods in the stable homotopy groups of spheres, Ann. of Math. Studies, n° 49, Princeton University Press. Zbl0101.40703MR26 #777
- [24] G. W. WHITEHEAD, Generalized homology theories, Trans. Amer. Math. Soc., 102 (1962), pp. 227-283. Zbl0124.38302MR25 #573
- [25] O. ZARISKI and P. SAMUEL, Commutative algebra, vol. II, D. Van Nostrand, New York, 1958. MR19,833e
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.