(Non-)weakly mixing operators and hypercyclicity sets
Frédéric Bayart[1]; Étienne Matheron[2]
- [1] Université Blaise Pascal Laboratoire de Mathématiques Campus universitaire des Cézeaux 63177 Aubières Cedex (France)
- [2] Université d’Artois Laboratoire de Mathématiques de Lens Rue Jean Souvraz S.P. 18 62307 Lens (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 1, page 1-35
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBayart, Frédéric, and Matheron, Étienne. "(Non-)weakly mixing operators and hypercyclicity sets." Annales de l’institut Fourier 59.1 (2009): 1-35. <http://eudml.org/doc/10391>.
@article{Bayart2009,
abstract = {We study the frequency of hypercyclicity of hypercyclic, non–weakly mixing linear operators. In particular, we show that on the space $\ell ^1(\mathbb\{N\})$, any sublinear frequency can be realized by a non–weakly mixing operator. A weaker but similar result is obtained for $c_0(\mathbb\{N\})$ or $\ell ^p(\mathbb\{N\})$, $1<p<\infty $. Part of our results is related to some Sidon-type lacunarity properties for sequences of natural numbers.},
affiliation = {Université Blaise Pascal Laboratoire de Mathématiques Campus universitaire des Cézeaux 63177 Aubières Cedex (France); Université d’Artois Laboratoire de Mathématiques de Lens Rue Jean Souvraz S.P. 18 62307 Lens (France)},
author = {Bayart, Frédéric, Matheron, Étienne},
journal = {Annales de l’institut Fourier},
keywords = {Hypercyclic operators; weak mixing; Sidon sequences; hypercyclic operators},
language = {eng},
number = {1},
pages = {1-35},
publisher = {Association des Annales de l’institut Fourier},
title = {(Non-)weakly mixing operators and hypercyclicity sets},
url = {http://eudml.org/doc/10391},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Bayart, Frédéric
AU - Matheron, Étienne
TI - (Non-)weakly mixing operators and hypercyclicity sets
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 1
SP - 1
EP - 35
AB - We study the frequency of hypercyclicity of hypercyclic, non–weakly mixing linear operators. In particular, we show that on the space $\ell ^1(\mathbb{N})$, any sublinear frequency can be realized by a non–weakly mixing operator. A weaker but similar result is obtained for $c_0(\mathbb{N})$ or $\ell ^p(\mathbb{N})$, $1<p<\infty $. Part of our results is related to some Sidon-type lacunarity properties for sequences of natural numbers.
LA - eng
KW - Hypercyclic operators; weak mixing; Sidon sequences; hypercyclic operators
UR - http://eudml.org/doc/10391
ER -
References
top- S. Ansari, Hypercyclic and cyclic vectors, J. Funct. Anal. 128 (1995), 374-383 Zbl0853.47013MR1319961
- F. Bayart, S. Grivaux, Frequently hypercyclic operators, Trans. Amer. Math. Soc. 358 (2006), 5083-5117 Zbl1115.47005MR2231886
- F. Bayart, É. Matheron, Hypercyclic operators failing the Hypercyclicity Criterion on classical Banach spaces, J. Funct. Anal. 250 (2007), 426-441 Zbl1131.47006MR2352487
- J. Bès, A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal. 167 (1999), 94-112 Zbl0941.47002MR1710637
- A. Bonilla, K.-G. Grosse-Erdmann, Frequently hypercyclic operators and vectors, Ergodic Theory Dynam. Systems 27 (2007), 383-404 Zbl1119.47011MR2308137
- P. S. Bourdon, N. S. Feldman, Somewhere dense orbits are everywhere dense, Indiana Univ. Math. J. 52 (2003), 811-819 Zbl1049.47002MR1986898
- G. Costakis, M. Sambarino, Topologically mixing hypercyclic operators, Proc. Amer. Math. Soc. 132 (2004), 385-389 Zbl1054.47006MR2022360
- M. De La Rosa, C. J. Read, A hypercyclic operator whose direct sum is not hypercyclic Zbl1193.47014
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, (1981), Princeton University Press Zbl0459.28023MR603625
- E. Glasner, Ergodic theory via joinings, 101 (2003), American Mathematical Society Zbl1038.37002MR1958753
- E. Glasner, B. Weiss, On the interplay between mesurable and topological dynamics, 1B (2006), Elsevier B. V. Zbl1130.37303MR2186250
- S. Grivaux, Hypercyclic operators, mixing operators, and the bounded steps problem, J. Operator Theory 54 (2005), 147-168 Zbl1104.47010MR2168865
- K.-G. Grosse-Erdmann, A. Peris, Frequently dense orbits, C. R. Acad. Sci. Paris 341 (2005), 123-128 Zbl1068.47012MR2153969
- H. Halberstam, K. F. Roth, Sequences, (1983), Springer-Verlag Zbl0498.10001MR687978
- A. Peris, L. Saldivia, Syndetically hypercyclic operators, Integral Equations Operator Theory 51 (2005), 275-281 Zbl1082.47004MR2120081
- I. Z. Rusza, An infinite Sidon sequence, J. Number Theory 68 (1998), 63-71 Zbl0927.11005MR1492889
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.