Asymptotic inversion of convolution operators

Harold Widom

Publications Mathématiques de l'IHÉS (1974)

  • Volume: 44, page 191-240
  • ISSN: 0073-8301

How to cite

top

Widom, Harold. "Asymptotic inversion of convolution operators." Publications Mathématiques de l'IHÉS 44 (1974): 191-240. <http://eudml.org/doc/103933>.

@article{Widom1974,
author = {Widom, Harold},
journal = {Publications Mathématiques de l'IHÉS},
language = {eng},
pages = {191-240},
publisher = {Institut des Hautes Études Scientifiques},
title = {Asymptotic inversion of convolution operators},
url = {http://eudml.org/doc/103933},
volume = {44},
year = {1974},
}

TY - JOUR
AU - Widom, Harold
TI - Asymptotic inversion of convolution operators
JO - Publications Mathématiques de l'IHÉS
PY - 1974
PB - Institut des Hautes Études Scientifiques
VL - 44
SP - 191
EP - 240
LA - eng
UR - http://eudml.org/doc/103933
ER -

References

top
  1. [1] R. ARENS and A. CALDERÓN, Analytic functions of several Banach algebra elements, Ann. of Math., 62 (1955), 204-216. Zbl0065.34802MR17,177c
  2. [2] G. BAXTER, A norm inequality for a finite section Wiener-Hopf equation, Ill. J. Math., 7 (1963), 97-103. Zbl0113.09101MR26 #2818
  3. [3] T. BONNESEN u. W. FENCHEL, Theorie der konvexen Körper, Berlin, Springer, 1934. Zbl0008.07708JFM60.0673.01
  4. [4] A. DEVINATZ, The strong Szegö limit theorem, Ill. J. Math., 11 (1967), 160-175. Zbl0166.40301MR34 #6438
  5. [5] I. C. GOHBERG and M. G. KREIN, Introduction to the theory of linear non-selfadjoint operators, Providence (Amer. Math. Soc.), 1969. Zbl0181.13504MR39 #7447
  6. [6] B. L. GOLINSKII and I. A. IBRAGIMOV, On Szegö's limit theorem, Math. U.S.S.R., Izvestija, 5 (1971), 421-444. Zbl0249.42012
  7. [7] R. E. HARTWIG and M. E. FISHER, Asymptotic behavior of Toeplitz matrices and determinants, Arch. Rat. Mech. Anal., 32 (1969), 190-225. Zbl0169.04403MR38 #4888
  8. [8] I. I. HIRSCHMAN, Jr., On a theorem of Kac, Szegö, and Baxter, J. d'Anal. Math., 14 (1965), 225-234. Zbl0141.07001
  9. [9] I. I. HIRSCHMAN, Jr., On a formula of Kac and Achiezer II, Arch. Rat. Mech. Anal., 38 (1970), 189-223. Zbl0211.41804MR54 #997
  10. [10] M. KAC, Toeplitz matrices, translation kernels, and a related problem in probability theory, Duke Math. J., 21 (1954), 501-509. Zbl0056.10201MR16,31a
  11. [11] L. MEJLBO and P. SCHMIDT, On the eigenvalues of generalized Toeplitz matrices, Math. Scand., 10 (1962), 5-16. Zbl0117.32901MR25 #5345
  12. [12] L. NIRENBERG, Pseudo-differential operators, Proc. Symp. Pure Math., 16, Amer. Math. Soc., Providence, 1970. Zbl0218.35075MR42 #5108
  13. [13] G. SZEGÖ, On certain hermitian forms associated with the Fourier series of a positive function, Comm. séminaire math. Univ. Lund, tome supp. (1952), 228-237. Zbl0048.04203MR14,553d
  14. [14] H. WIDOM, A theorem on translation kernels in n dimensions, Trans. Amer. Math. Soc., 94 (1960), 170-180. Zbl0093.11501MR22 #1793

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.