Asymptotic inversion of convolution operators
Publications Mathématiques de l'IHÉS (1974)
- Volume: 44, page 191-240
- ISSN: 0073-8301
Access Full Article
topHow to cite
topWidom, Harold. "Asymptotic inversion of convolution operators." Publications Mathématiques de l'IHÉS 44 (1974): 191-240. <http://eudml.org/doc/103933>.
@article{Widom1974,
author = {Widom, Harold},
journal = {Publications Mathématiques de l'IHÉS},
language = {eng},
pages = {191-240},
publisher = {Institut des Hautes Études Scientifiques},
title = {Asymptotic inversion of convolution operators},
url = {http://eudml.org/doc/103933},
volume = {44},
year = {1974},
}
TY - JOUR
AU - Widom, Harold
TI - Asymptotic inversion of convolution operators
JO - Publications Mathématiques de l'IHÉS
PY - 1974
PB - Institut des Hautes Études Scientifiques
VL - 44
SP - 191
EP - 240
LA - eng
UR - http://eudml.org/doc/103933
ER -
References
top- [1] R. ARENS and A. CALDERÓN, Analytic functions of several Banach algebra elements, Ann. of Math., 62 (1955), 204-216. Zbl0065.34802MR17,177c
- [2] G. BAXTER, A norm inequality for a finite section Wiener-Hopf equation, Ill. J. Math., 7 (1963), 97-103. Zbl0113.09101MR26 #2818
- [3] T. BONNESEN u. W. FENCHEL, Theorie der konvexen Körper, Berlin, Springer, 1934. Zbl0008.07708JFM60.0673.01
- [4] A. DEVINATZ, The strong Szegö limit theorem, Ill. J. Math., 11 (1967), 160-175. Zbl0166.40301MR34 #6438
- [5] I. C. GOHBERG and M. G. KREIN, Introduction to the theory of linear non-selfadjoint operators, Providence (Amer. Math. Soc.), 1969. Zbl0181.13504MR39 #7447
- [6] B. L. GOLINSKII and I. A. IBRAGIMOV, On Szegö's limit theorem, Math. U.S.S.R., Izvestija, 5 (1971), 421-444. Zbl0249.42012
- [7] R. E. HARTWIG and M. E. FISHER, Asymptotic behavior of Toeplitz matrices and determinants, Arch. Rat. Mech. Anal., 32 (1969), 190-225. Zbl0169.04403MR38 #4888
- [8] I. I. HIRSCHMAN, Jr., On a theorem of Kac, Szegö, and Baxter, J. d'Anal. Math., 14 (1965), 225-234. Zbl0141.07001
- [9] I. I. HIRSCHMAN, Jr., On a formula of Kac and Achiezer II, Arch. Rat. Mech. Anal., 38 (1970), 189-223. Zbl0211.41804MR54 #997
- [10] M. KAC, Toeplitz matrices, translation kernels, and a related problem in probability theory, Duke Math. J., 21 (1954), 501-509. Zbl0056.10201MR16,31a
- [11] L. MEJLBO and P. SCHMIDT, On the eigenvalues of generalized Toeplitz matrices, Math. Scand., 10 (1962), 5-16. Zbl0117.32901MR25 #5345
- [12] L. NIRENBERG, Pseudo-differential operators, Proc. Symp. Pure Math., 16, Amer. Math. Soc., Providence, 1970. Zbl0218.35075MR42 #5108
- [13] G. SZEGÖ, On certain hermitian forms associated with the Fourier series of a positive function, Comm. séminaire math. Univ. Lund, tome supp. (1952), 228-237. Zbl0048.04203MR14,553d
- [14] H. WIDOM, A theorem on translation kernels in n dimensions, Trans. Amer. Math. Soc., 94 (1960), 170-180. Zbl0093.11501MR22 #1793
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.