Constructing equivariant maps for representations
- [1] Dipartimento di Matematica Applicata “U.Dini” via Buonarroti 1/c 56127 Pisa (Italy)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 1, page 393-428
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFrancaviglia, Stefano. "Constructing equivariant maps for representations." Annales de l’institut Fourier 59.1 (2009): 393-428. <http://eudml.org/doc/10397>.
@article{Francaviglia2009,
abstract = {We show that if $\Gamma $ is a discrete subgroup of the group of the isometries of $\mathbb\{H\}^k$, and if $\rho $ is a representation of $\Gamma $ into the group of the isometries of $\mathbb\{H\}^n$, then any $\rho $-equivariant map $F:\mathbb\{H\}^k \rightarrow \mathbb\{H\}^n$ extends to the boundary in a weak sense in the setting of Borel measures. As a consequence of this fact, we obtain an extension of a result of Besson, Courtois and Gallot about the existence of volume non-increasing, equivariant maps. Then, we show that the weak extension we obtain is actually a measurable $\rho $-equivariant map in the classical sense. We use this fact to obtain measurable versions of Cannon-Thurston-type results for equivariant Peano curves. For example, we prove that if $\Gamma $ is of divergence type and $\rho $ is non-elementary, then there exists a measurable map $D:\partial \mathbb\{H\}^k\rightarrow \partial \mathbb\{H\}^n$ conjugating the actions of $\Gamma $ and $\rho (\Gamma )$. Related applications are discussed.},
affiliation = {Dipartimento di Matematica Applicata “U.Dini” via Buonarroti 1/c 56127 Pisa (Italy)},
author = {Francaviglia, Stefano},
journal = {Annales de l’institut Fourier},
keywords = {Hyperbolic spaces; discrete groups; isometries; representation; equivariant; barycenter; natural map; volume; hyperbolic spaces},
language = {eng},
number = {1},
pages = {393-428},
publisher = {Association des Annales de l’institut Fourier},
title = {Constructing equivariant maps for representations},
url = {http://eudml.org/doc/10397},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Francaviglia, Stefano
TI - Constructing equivariant maps for representations
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 1
SP - 393
EP - 428
AB - We show that if $\Gamma $ is a discrete subgroup of the group of the isometries of $\mathbb{H}^k$, and if $\rho $ is a representation of $\Gamma $ into the group of the isometries of $\mathbb{H}^n$, then any $\rho $-equivariant map $F:\mathbb{H}^k \rightarrow \mathbb{H}^n$ extends to the boundary in a weak sense in the setting of Borel measures. As a consequence of this fact, we obtain an extension of a result of Besson, Courtois and Gallot about the existence of volume non-increasing, equivariant maps. Then, we show that the weak extension we obtain is actually a measurable $\rho $-equivariant map in the classical sense. We use this fact to obtain measurable versions of Cannon-Thurston-type results for equivariant Peano curves. For example, we prove that if $\Gamma $ is of divergence type and $\rho $ is non-elementary, then there exists a measurable map $D:\partial \mathbb{H}^k\rightarrow \partial \mathbb{H}^n$ conjugating the actions of $\Gamma $ and $\rho (\Gamma )$. Related applications are discussed.
LA - eng
KW - Hyperbolic spaces; discrete groups; isometries; representation; equivariant; barycenter; natural map; volume; hyperbolic spaces
UR - http://eudml.org/doc/10397
ER -
References
top- Luigi Ambrosio, Nicola Fusco, Diego Pallara, Functions of bounded variation and free discontinuity problems, (2000), The Clarendon Press Oxford University Press, New York Zbl0957.49001MR1857292
- Luigi Ambrosio, Stefano Lisini, Giuseppe Savaré, Stability of flows associated to gradient vector fields and convergence of iterated transport maps, (2005) Zbl1099.49027MR2258529
- Riccardo Benedetti, Carlo Petronio, Lectures on hyperbolic geometry, (1992), Springer-Verlag, Berlin Zbl0768.51018MR1219310
- Gérard Besson, Gilles Courtois, Sylvestre Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geom. Funct. Anal. 5 (1995), 731-799 Zbl0851.53032MR1354289
- Gérard Besson, Gilles Courtois, Sylvestre Gallot, Minimal entropy and Mostow’s rigidity theorems, Ergodic Theory Dynam. Systems 16 (1996), 623-649 Zbl0887.58030MR1406425
- Gérard Besson, Gilles Courtois, Sylvestre Gallot, Lemme de Schwarz réel et applications géométriques, Acta Mathematica 183 (1999), 145-169 Zbl1035.53038MR1738042
- Christopher J. Bishop, Peter W. Jones, Hausdorff dimension and Kleinian groups, Acta Mathematica 179 (1997), 1-39 Zbl0921.30032MR1484767
- Richard D. Canary, Ends of hyperbolic -manifolds, J. Amer. Math. Soc. 6 (1993), 1-35 Zbl0810.57006MR1166330
- James W. Cannon, William P. Thurston, Group invariant Peano curves, Preprint (1989) Zbl1136.57009
- Claude Dellacherie, Paul-André Meyer, Probabilities and potential, 29 (1978), North-Holland Publishing Co., Amsterdam Zbl0494.60001MR521810
- Adrien Douady, Clifford J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157 (1986), 23-48 Zbl0615.30005MR857678
- Nathan M. Dunfield, Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds, Invent. Math. 136 (1999), 623-657 Zbl0928.57012MR1695208
- Stefano Francaviglia, Hyperbolic volume of representations of fundamental groups of cusped -manifolds, Int. Math. Res. Not. (2004), 425-459 Zbl1088.57015MR2040346
- Stefano Francaviglia, Ben Klaff, Maximal volume representations are Fuchsian, Geom. Dedicata 117 (2006), 111-124 Zbl1096.51004MR2231161
- Michael Kapovich, Hyperbolic manifolds and discrete groups, 183 (2001), Birkhäuser Boston Inc., Boston, MA Zbl0958.57001MR1792613
- B. Klaff, Boundary slopes of knots in closed -manifolds with cyclic fundamental group, (2003)
- Mj Mahan, Cannon-Thurston Maps and Bounded Geometry Zbl1204.57014
- Mj Mahan, Ending Laminations and Cannon-Thurston Maps Zbl1297.57040
- Curtis T. McMullen, Local connectivity, Kleinian groups and geodesics on the blowup of the torus., Invent. Math. 146 (2001), 35-91 Zbl1061.37025MR1859018
- Yair N. Minsky, On rigidity, limit sets, and end invariants of hyperbolic -manifolds, J. Amer. Math. Soc. 7 (1994), 539-588 Zbl0808.30027MR1257060
- Hideki Miyachi, Moduli of continuity of Cannon-Thurston maps, Spaces of Kleinian groups 329 (2006), 121-149, Cambridge Univ. Press, Cambridge Zbl1098.30032MR2258747
- Peter J. Nicholls, The ergodic theory of discrete groups, 143 (1989), Cambridge University Press, Cambridge Zbl0674.58001MR1041575
- Thomas Roblin, Sur l’ergodicité rationnelle et les propriétés ergodiques du flot géodésique dans les variétés hyperboliques, Ergodic Theory Dynam. Systems 20 (2000), 1785-1819 Zbl0968.37012MR1804958
- Irène Scorza, Fractal curves in the limit sets of simply degenerate once punctured torus groups Zbl1185.30044
- Teruhiko Soma, Equivariant, almost homeomorphic maps between and , Proc. Amer. Math. Soc. 123 (1995), 2915-2920 Zbl0855.57012MR1277134
- Elias M. Stein, Singular integrals and differentiability properties of functions, (1970), Princeton University Press, Princeton, N.J. Zbl0207.13501MR290095
- Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. (1979), 171-202 Zbl0439.30034MR556586
- Dennis Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984), 259-277 Zbl0566.58022MR766265
- W. P. Thurston, The geometry and topology of -manifolds, (1979), Princeton University Mathematics Department
- Chengbo Yue, Dimension and rigidity of quasi-Fuchsian representations, Ann. of Math. (2) 143 (1996), 331-355 Zbl0843.22019MR1381989
- Chengbo Yue, The ergodic theory of discrete isometry groups on manifolds of variable negative curvature, Trans. Amer. Math. Soc. 348 (1996), 4965-5005 Zbl0864.58047MR1348871
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.