Constructing equivariant maps for representations

Stefano Francaviglia[1]

  • [1] Dipartimento di Matematica Applicata “U.Dini” via Buonarroti 1/c 56127 Pisa (Italy)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 1, page 393-428
  • ISSN: 0373-0956

Abstract

top
We show that if Γ is a discrete subgroup of the group of the isometries of k , and if ρ is a representation of Γ into the group of the isometries of n , then any ρ -equivariant map F : k n extends to the boundary in a weak sense in the setting of Borel measures. As a consequence of this fact, we obtain an extension of a result of Besson, Courtois and Gallot about the existence of volume non-increasing, equivariant maps. Then, we show that the weak extension we obtain is actually a measurable ρ -equivariant map in the classical sense. We use this fact to obtain measurable versions of Cannon-Thurston-type results for equivariant Peano curves. For example, we prove that if Γ is of divergence type and ρ is non-elementary, then there exists a measurable map D : k n conjugating the actions of Γ and ρ ( Γ ) . Related applications are discussed.

How to cite

top

Francaviglia, Stefano. "Constructing equivariant maps for representations." Annales de l’institut Fourier 59.1 (2009): 393-428. <http://eudml.org/doc/10397>.

@article{Francaviglia2009,
abstract = {We show that if $\Gamma $ is a discrete subgroup of the group of the isometries of $\mathbb\{H\}^k$, and if $\rho $ is a representation of $\Gamma $ into the group of the isometries of $\mathbb\{H\}^n$, then any $\rho $-equivariant map $F:\mathbb\{H\}^k \rightarrow \mathbb\{H\}^n$ extends to the boundary in a weak sense in the setting of Borel measures. As a consequence of this fact, we obtain an extension of a result of Besson, Courtois and Gallot about the existence of volume non-increasing, equivariant maps. Then, we show that the weak extension we obtain is actually a measurable $\rho $-equivariant map in the classical sense. We use this fact to obtain measurable versions of Cannon-Thurston-type results for equivariant Peano curves. For example, we prove that if $\Gamma $ is of divergence type and $\rho $ is non-elementary, then there exists a measurable map $D:\partial \mathbb\{H\}^k\rightarrow \partial \mathbb\{H\}^n$ conjugating the actions of $\Gamma $ and $\rho (\Gamma )$. Related applications are discussed.},
affiliation = {Dipartimento di Matematica Applicata “U.Dini” via Buonarroti 1/c 56127 Pisa (Italy)},
author = {Francaviglia, Stefano},
journal = {Annales de l’institut Fourier},
keywords = {Hyperbolic spaces; discrete groups; isometries; representation; equivariant; barycenter; natural map; volume; hyperbolic spaces},
language = {eng},
number = {1},
pages = {393-428},
publisher = {Association des Annales de l’institut Fourier},
title = {Constructing equivariant maps for representations},
url = {http://eudml.org/doc/10397},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Francaviglia, Stefano
TI - Constructing equivariant maps for representations
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 1
SP - 393
EP - 428
AB - We show that if $\Gamma $ is a discrete subgroup of the group of the isometries of $\mathbb{H}^k$, and if $\rho $ is a representation of $\Gamma $ into the group of the isometries of $\mathbb{H}^n$, then any $\rho $-equivariant map $F:\mathbb{H}^k \rightarrow \mathbb{H}^n$ extends to the boundary in a weak sense in the setting of Borel measures. As a consequence of this fact, we obtain an extension of a result of Besson, Courtois and Gallot about the existence of volume non-increasing, equivariant maps. Then, we show that the weak extension we obtain is actually a measurable $\rho $-equivariant map in the classical sense. We use this fact to obtain measurable versions of Cannon-Thurston-type results for equivariant Peano curves. For example, we prove that if $\Gamma $ is of divergence type and $\rho $ is non-elementary, then there exists a measurable map $D:\partial \mathbb{H}^k\rightarrow \partial \mathbb{H}^n$ conjugating the actions of $\Gamma $ and $\rho (\Gamma )$. Related applications are discussed.
LA - eng
KW - Hyperbolic spaces; discrete groups; isometries; representation; equivariant; barycenter; natural map; volume; hyperbolic spaces
UR - http://eudml.org/doc/10397
ER -

References

top
  1. Luigi Ambrosio, Nicola Fusco, Diego Pallara, Functions of bounded variation and free discontinuity problems, (2000), The Clarendon Press Oxford University Press, New York Zbl0957.49001MR1857292
  2. Luigi Ambrosio, Stefano Lisini, Giuseppe Savaré, Stability of flows associated to gradient vector fields and convergence of iterated transport maps, (2005) Zbl1099.49027MR2258529
  3. Riccardo Benedetti, Carlo Petronio, Lectures on hyperbolic geometry, (1992), Springer-Verlag, Berlin Zbl0768.51018MR1219310
  4. Gérard Besson, Gilles Courtois, Sylvestre Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geom. Funct. Anal. 5 (1995), 731-799 Zbl0851.53032MR1354289
  5. Gérard Besson, Gilles Courtois, Sylvestre Gallot, Minimal entropy and Mostow’s rigidity theorems, Ergodic Theory Dynam. Systems 16 (1996), 623-649 Zbl0887.58030MR1406425
  6. Gérard Besson, Gilles Courtois, Sylvestre Gallot, Lemme de Schwarz réel et applications géométriques, Acta Mathematica 183 (1999), 145-169 Zbl1035.53038MR1738042
  7. Christopher J. Bishop, Peter W. Jones, Hausdorff dimension and Kleinian groups, Acta Mathematica 179 (1997), 1-39 Zbl0921.30032MR1484767
  8. Richard D. Canary, Ends of hyperbolic 3 -manifolds, J. Amer. Math. Soc. 6 (1993), 1-35 Zbl0810.57006MR1166330
  9. James W. Cannon, William P. Thurston, Group invariant Peano curves, Preprint (1989) Zbl1136.57009
  10. Claude Dellacherie, Paul-André Meyer, Probabilities and potential, 29 (1978), North-Holland Publishing Co., Amsterdam Zbl0494.60001MR521810
  11. Adrien Douady, Clifford J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157 (1986), 23-48 Zbl0615.30005MR857678
  12. Nathan M. Dunfield, Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds, Invent. Math. 136 (1999), 623-657 Zbl0928.57012MR1695208
  13. Stefano Francaviglia, Hyperbolic volume of representations of fundamental groups of cusped 3 -manifolds, Int. Math. Res. Not. (2004), 425-459 Zbl1088.57015MR2040346
  14. Stefano Francaviglia, Ben Klaff, Maximal volume representations are Fuchsian, Geom. Dedicata 117 (2006), 111-124 Zbl1096.51004MR2231161
  15. Michael Kapovich, Hyperbolic manifolds and discrete groups, 183 (2001), Birkhäuser Boston Inc., Boston, MA Zbl0958.57001MR1792613
  16. B. Klaff, Boundary slopes of knots in closed 3 -manifolds with cyclic fundamental group, (2003) 
  17. Mj Mahan, Cannon-Thurston Maps and Bounded Geometry Zbl1204.57014
  18. Mj Mahan, Ending Laminations and Cannon-Thurston Maps Zbl1297.57040
  19. Curtis T. McMullen, Local connectivity, Kleinian groups and geodesics on the blowup of the torus., Invent. Math. 146 (2001), 35-91 Zbl1061.37025MR1859018
  20. Yair N. Minsky, On rigidity, limit sets, and end invariants of hyperbolic 3 -manifolds, J. Amer. Math. Soc. 7 (1994), 539-588 Zbl0808.30027MR1257060
  21. Hideki Miyachi, Moduli of continuity of Cannon-Thurston maps, Spaces of Kleinian groups 329 (2006), 121-149, Cambridge Univ. Press, Cambridge Zbl1098.30032MR2258747
  22. Peter J. Nicholls, The ergodic theory of discrete groups, 143 (1989), Cambridge University Press, Cambridge Zbl0674.58001MR1041575
  23. Thomas Roblin, Sur l’ergodicité rationnelle et les propriétés ergodiques du flot géodésique dans les variétés hyperboliques, Ergodic Theory Dynam. Systems 20 (2000), 1785-1819 Zbl0968.37012MR1804958
  24. Irène Scorza, Fractal curves in the limit sets of simply degenerate once punctured torus groups Zbl1185.30044
  25. Teruhiko Soma, Equivariant, almost homeomorphic maps between S 1 and S 2 , Proc. Amer. Math. Soc. 123 (1995), 2915-2920 Zbl0855.57012MR1277134
  26. Elias M. Stein, Singular integrals and differentiability properties of functions, (1970), Princeton University Press, Princeton, N.J. Zbl0207.13501MR290095
  27. Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. (1979), 171-202 Zbl0439.30034MR556586
  28. Dennis Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984), 259-277 Zbl0566.58022MR766265
  29. W. P. Thurston, The geometry and topology of 3 -manifolds, (1979), Princeton University Mathematics Department 
  30. Chengbo Yue, Dimension and rigidity of quasi-Fuchsian representations, Ann. of Math. (2) 143 (1996), 331-355 Zbl0843.22019MR1381989
  31. Chengbo Yue, The ergodic theory of discrete isometry groups on manifolds of variable negative curvature, Trans. Amer. Math. Soc. 348 (1996), 4965-5005 Zbl0864.58047MR1348871

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.