Structure of mappings of an interval with zero entropy
Publications Mathématiques de l'IHÉS (1981)
- Volume: 53, page 5-16
 - ISSN: 0073-8301
 
Access Full Article
topHow to cite
topMisiurewicz, Michal. "Structure of mappings of an interval with zero entropy." Publications Mathématiques de l'IHÉS 53 (1981): 5-16. <http://eudml.org/doc/103975>.
@article{Misiurewicz1981,
	author = {Misiurewicz, Michal},
	journal = {Publications Mathématiques de l'IHÉS},
	keywords = {smooth map of an interval into itself with one critical point and with negative Schwarzian derivative; topological entropy; set of maps with positive entropy; non-wandering points; periods of periodic points; invariant Cantor set; adding machine; invariant non-atomic measure},
	language = {eng},
	pages = {5-16},
	publisher = {Institut des Hautes Études Scientifiques},
	title = {Structure of mappings of an interval with zero entropy},
	url = {http://eudml.org/doc/103975},
	volume = {53},
	year = {1981},
}
TY  - JOUR
AU  - Misiurewicz, Michal
TI  - Structure of mappings of an interval with zero entropy
JO  - Publications Mathématiques de l'IHÉS
PY  - 1981
PB  - Institut des Hautes Études Scientifiques
VL  - 53
SP  - 5
EP  - 16
LA  - eng
KW  - smooth map of an interval into itself with one critical point and with negative Schwarzian derivative; topological entropy; set of maps with positive entropy; non-wandering points; periods of periodic points; invariant Cantor set; adding machine; invariant non-atomic measure
UR  - http://eudml.org/doc/103975
ER  - 
References
top- [1] P. COLLET, J.-P. ECKMANN, O. E. LANDFORD III, Universal properties of maps of an interval, preprint.
 - [2] M. FEIGENBAUM, Quantitative universality for a class of nonlinear transformation, preprint, Los Alamos. Zbl0509.58037
 - [3] L. JONKER, Periodic orbits and kneading invariants, preprint, Warwick, June 1977.
 - [4] N. METROPOLIS, M. L. STEIN, P. R. STEIN, On finite limit sets for transformations on the unit interval, Journal of Combinatorial Theory (A), 15 (1973), 25-44. Zbl0259.26003MR47 #5183
 - [5] J. MILNOR, The theory of kneading, preprint.
 - [6] M. MISIUREWICZ, Horsehoes for mappings of the interval, Bull. Acad. Pol. Sci., Sér. sci. math., 27 (1979), 167-169. Zbl0459.54031MR81b:58033
 - [7] M. MISIUREWICZ, Invariant measures for continuous transformations of [0, 1] with zero topological entropy, Ergodic Theory, Proceedings, Oberwolfach, Germany, 1978, Lecture Notes in Math., 729, 144-152. Zbl0415.28015MR81a:28017
 - [8] M. MISIUREWICZ, W. SZLENK, Entropy of piecewise monotone mappings, Astérisque, 50 (1977), 299-310 (full version will appear in Studia Math., 67). Zbl0376.54019MR58 #7577
 - [9] D. SINGER, Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267. Zbl0391.58014MR58 #13206
 - [10] A. N. ARKOVSKIǏ, Coexistence of cycles of a continuous map of a line into itself, Ukr. Mat. Žurnal, 16 (1964), 1, 61-71 (in Russian).
 - [11] P. TEFAN, A theorem of arkovskiǏ on the existence of periodic orbits of continuous endomorphism of the real line, Commun. Math. Phys., 54 (1977), 237-248. Zbl0354.54027
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.