Structure of mappings of an interval with zero entropy

Michal Misiurewicz

Publications Mathématiques de l'IHÉS (1981)

  • Volume: 53, page 5-16
  • ISSN: 0073-8301

How to cite

top

Misiurewicz, Michal. "Structure of mappings of an interval with zero entropy." Publications Mathématiques de l'IHÉS 53 (1981): 5-16. <http://eudml.org/doc/103975>.

@article{Misiurewicz1981,
author = {Misiurewicz, Michal},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {smooth map of an interval into itself with one critical point and with negative Schwarzian derivative; topological entropy; set of maps with positive entropy; non-wandering points; periods of periodic points; invariant Cantor set; adding machine; invariant non-atomic measure},
language = {eng},
pages = {5-16},
publisher = {Institut des Hautes Études Scientifiques},
title = {Structure of mappings of an interval with zero entropy},
url = {http://eudml.org/doc/103975},
volume = {53},
year = {1981},
}

TY - JOUR
AU - Misiurewicz, Michal
TI - Structure of mappings of an interval with zero entropy
JO - Publications Mathématiques de l'IHÉS
PY - 1981
PB - Institut des Hautes Études Scientifiques
VL - 53
SP - 5
EP - 16
LA - eng
KW - smooth map of an interval into itself with one critical point and with negative Schwarzian derivative; topological entropy; set of maps with positive entropy; non-wandering points; periods of periodic points; invariant Cantor set; adding machine; invariant non-atomic measure
UR - http://eudml.org/doc/103975
ER -

References

top
  1. [1] P. COLLET, J.-P. ECKMANN, O. E. LANDFORD III, Universal properties of maps of an interval, preprint. 
  2. [2] M. FEIGENBAUM, Quantitative universality for a class of nonlinear transformation, preprint, Los Alamos. Zbl0509.58037
  3. [3] L. JONKER, Periodic orbits and kneading invariants, preprint, Warwick, June 1977. 
  4. [4] N. METROPOLIS, M. L. STEIN, P. R. STEIN, On finite limit sets for transformations on the unit interval, Journal of Combinatorial Theory (A), 15 (1973), 25-44. Zbl0259.26003MR47 #5183
  5. [5] J. MILNOR, The theory of kneading, preprint. 
  6. [6] M. MISIUREWICZ, Horsehoes for mappings of the interval, Bull. Acad. Pol. Sci., Sér. sci. math., 27 (1979), 167-169. Zbl0459.54031MR81b:58033
  7. [7] M. MISIUREWICZ, Invariant measures for continuous transformations of [0, 1] with zero topological entropy, Ergodic Theory, Proceedings, Oberwolfach, Germany, 1978, Lecture Notes in Math., 729, 144-152. Zbl0415.28015MR81a:28017
  8. [8] M. MISIUREWICZ, W. SZLENK, Entropy of piecewise monotone mappings, Astérisque, 50 (1977), 299-310 (full version will appear in Studia Math., 67). Zbl0376.54019MR58 #7577
  9. [9] D. SINGER, Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267. Zbl0391.58014MR58 #13206
  10. [10] A. N. ŠARKOVSKIǏ, Coexistence of cycles of a continuous map of a line into itself, Ukr. Mat. Žurnal, 16 (1964), 1, 61-71 (in Russian). 
  11. [11] P. ŠTEFAN, A theorem of ŠarkovskiǏ on the existence of periodic orbits of continuous endomorphism of the real line, Commun. Math. Phys., 54 (1977), 237-248. Zbl0354.54027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.