Homotopy representations of finite groups

Tammo Tom Dieck; Ted Petrie

Publications Mathématiques de l'IHÉS (1982)

  • Volume: 56, page 129-169
  • ISSN: 0073-8301

How to cite

top

Tom Dieck, Tammo, and Petrie, Ted. "Homotopy representations of finite groups." Publications Mathématiques de l'IHÉS 56 (1982): 129-169. <http://eudml.org/doc/103985>.

@article{TomDieck1982,
author = {Tom Dieck, Tammo, Petrie, Ted},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {actions of finite groups on homotopy spheres; homotopy representation; dimension function; degree function; Picard group of homotopy representations of a finite group},
language = {eng},
pages = {129-169},
publisher = {Institut des Hautes Études Scientifiques},
title = {Homotopy representations of finite groups},
url = {http://eudml.org/doc/103985},
volume = {56},
year = {1982},
}

TY - JOUR
AU - Tom Dieck, Tammo
AU - Petrie, Ted
TI - Homotopy representations of finite groups
JO - Publications Mathématiques de l'IHÉS
PY - 1982
PB - Institut des Hautes Études Scientifiques
VL - 56
SP - 129
EP - 169
LA - eng
KW - actions of finite groups on homotopy spheres; homotopy representation; dimension function; degree function; Picard group of homotopy representations of a finite group
UR - http://eudml.org/doc/103985
ER -

References

top
  1. [1] BOREL (A.), Fixed point theorems for elementary commutative groups, in Seminar on transformation groups, Annals of Math. Studies, 43, Princeton Univ. Press, 1960. 
  2. [2] BREDON (G. E.), Introduction to compact transformation groups, Academic Press, New York, London, 1972. Zbl0246.57017MR54 #1265
  3. [3] BREDON (G. E.), Fixed point sets of actions on Poincaré duality spaces, Topology, 12 (1973), 159-175. Zbl0253.57005MR48 #9708
  4. [4] tom DIECK (T.), The Burnside ring of a compact Lie group I, Math. Ann., 215 (1975), 235-250. Zbl0313.57030MR52 #15510
  5. [5] tom DIECK (T.), Homotopy-equivalent group representations, Journal f. d. reine u. angew. Math., 298 (1978), 182-195. Zbl0368.20006MR58 #18498
  6. [6] tom DIECK (T.), Homotopy equivalent group representations and Picard groups of the Burnside ring and the character ring, Manuscripta math., 26 (1978), 179-200. Zbl0409.57037MR80b:20005
  7. [7] tom DIECK (T.), Semi-linear group actions on spheres: Dimension functions, in Proceedings Conf. Algebrai, Topology, Aarhus, 1978, Springer Lecture Notes, 763 (1979), 448-457. Zbl0434.57026MR81k:55004
  8. [8] tom DIECK (T.), Transformation groups and representation theory, Springer Lecture Notes, 766 (1979). Zbl0445.57023MR82c:57025
  9. [9] tom DIECK (T.) and PETRIE (T.), Geometric modules over the Burnside ring, Inventiones math., 47 (1978)c 273-287. Zbl0389.57008MR80h:57045
  10. [10] tom DIECK (T.) and PETRIE (T.), The homotopy structure of finite group actions on spheres, in Proceedings Conf. Algebraic Topology, Waterloo, 1978, Springer Lecture Notes, 741 (1979), 222-243. Zbl0416.57019MR82b:57030
  11. [11] DRESS (A.), Contributions to the theory of induced representations, in Batelle Institute Conference on Algebraic K-Theory II, Springer Lecture Notes, 342 (1973), 183-240. Zbl0331.18016MR52 #5787
  12. [12] HAUSCHILD (H.), Äquivariante Homotopie I, Arch. Math., 29 (1977), 158-165. Zbl0367.55013MR57 #7626
  13. [13] HAUSCHILD (H.), Äquivariante Whitehead Torsion, Manuscripta math., 26 (1978), 63-82. Zbl0402.57031MR80g:57023
  14. [14] HUPPERT (H.), Endliche Gruppen I, Springer, Berlin, Heidelberg, New York, 1967. Zbl0217.07201
  15. [15] ILLMAN (S.), Smooth equivariant triangulations of G-manifolds for G a finite group, Math. Ann., 233 (1978), 199-220. Zbl0359.57001MR58 #18474
  16. [16] JAMES (I. M.) and SEGAL (G. B.), On equivariant homotopy type, Topology, 17 (1978), 267-272. Zbl0403.57007MR80k:55045
  17. [17] LANG (S.), Algebra, Addison-Wesley, Reading, 1965. Zbl0193.34701MR33 #5416
  18. [18] MILNOR (J.), Singular points of complex hypersurfaces, Annals of Math. Studies, 61, Princeton Univ. Press, 1968. Zbl0184.48405MR39 #969
  19. [19] PETRIE (T.), G-maps and the projective class group, Comment. math. Helv., 51 (1976), 611-626. Zbl0365.55005MR57 #13992
  20. [20] PETRIE (T.), G-surgery, I. A Survey, in Proceedings Conf. Algebraic and Geometric Topology, Santa Barbara, 1977, Springer Lecture Notes, 664 (1978), 197-233. Zbl0403.57003MR80g:57049
  21. [21] RIM (D. S.), Modules over finite groups, Ann. of Math., 69 (1959), 700-712. Zbl0092.26104MR21 #3474
  22. [22] SWAN (R. G.), Induced representations and projective modules, Ann. of Math., 71 (1960), 552-578. Zbl0104.25102MR25 #2131
  23. [23] SWAN (R. G.), Periodic resolutions for finite groups, Ann. of Math., 72 (1960), 267-291. Zbl0096.01701MR23 #A2205
  24. [24] SWAN (R. G.) and EVANS (E. G.), K-theory of finite groups and orders, Springer Lecture Notes, 149 (1970). Zbl0205.32105MR46 #7310
  25. [25] TAYLOR (M. J.), Locallyfree class groups of groups of prime power order, Journal of Algebra, 50 (1978), 463-487. Zbl0377.20006MR57 #3193
  26. [26] WALL (C. T. C.), Finiteness conditions for CW-complexes, Ann. of Math., 81 (1965), 56-69. Zbl0152.21902MR30 #1515
  27. [27] WIRTHMÜLLER (K.), Equivariant S-duality, Arch. Math., 26 (1975), 427-431. Zbl0307.55010MR51 #11493
  28. [28] WOLF (J. A.), Spaces of constant curvature, McGraw-Hill, New York, 1967. Zbl0162.53304MR36 #829
  29. [29] tom DIECK (T.), Über projektive Moduln und Endlichkeitshindernisse bei Transformationsgruppen, Manuscripta math., 24 (1981), 135-155. Zbl0466.57015MR82k:57028
  30. [30] DOVERMANN (K. H.) and PETRIE (T.), Artin relation for smooth representations, Proc. Nat. Acad. Sci. U.S.A., 177 (1980), 5620-5621. Zbl0448.57019MR81m:57032
  31. [31] PETRIE (T.), Free metacyclic group actions on homotopy spheres, Ann. of Math., 94 (1971), 108-124. Zbl0224.57020MR45 #2744
  32. [32] SEGAL (G.), Equivariant stable homotopy, in Proc. Congrès intern. Math. Nice, 1970, t. 2, 59-63. Zbl0225.55014MR54 #11319
  33. [33] ILLMAN (S.), Equivariant algebraic topology, Thesis, Princeton, 1972. 
  34. [34] tom DIECK (T.), Homotopiedarstellungen endlicher Gruppen : Dimensionsfunktionen, Inventiones math., 67 (1982), 231-252. Zbl0507.57026MR84b:57029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.