Homotopy representations of finite groups
Publications Mathématiques de l'IHÉS (1982)
- Volume: 56, page 129-169
- ISSN: 0073-8301
Access Full Article
topHow to cite
topTom Dieck, Tammo, and Petrie, Ted. "Homotopy representations of finite groups." Publications Mathématiques de l'IHÉS 56 (1982): 129-169. <http://eudml.org/doc/103985>.
@article{TomDieck1982,
author = {Tom Dieck, Tammo, Petrie, Ted},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {actions of finite groups on homotopy spheres; homotopy representation; dimension function; degree function; Picard group of homotopy representations of a finite group},
language = {eng},
pages = {129-169},
publisher = {Institut des Hautes Études Scientifiques},
title = {Homotopy representations of finite groups},
url = {http://eudml.org/doc/103985},
volume = {56},
year = {1982},
}
TY - JOUR
AU - Tom Dieck, Tammo
AU - Petrie, Ted
TI - Homotopy representations of finite groups
JO - Publications Mathématiques de l'IHÉS
PY - 1982
PB - Institut des Hautes Études Scientifiques
VL - 56
SP - 129
EP - 169
LA - eng
KW - actions of finite groups on homotopy spheres; homotopy representation; dimension function; degree function; Picard group of homotopy representations of a finite group
UR - http://eudml.org/doc/103985
ER -
References
top- [1] BOREL (A.), Fixed point theorems for elementary commutative groups, in Seminar on transformation groups, Annals of Math. Studies, 43, Princeton Univ. Press, 1960.
- [2] BREDON (G. E.), Introduction to compact transformation groups, Academic Press, New York, London, 1972. Zbl0246.57017MR54 #1265
- [3] BREDON (G. E.), Fixed point sets of actions on Poincaré duality spaces, Topology, 12 (1973), 159-175. Zbl0253.57005MR48 #9708
- [4] tom DIECK (T.), The Burnside ring of a compact Lie group I, Math. Ann., 215 (1975), 235-250. Zbl0313.57030MR52 #15510
- [5] tom DIECK (T.), Homotopy-equivalent group representations, Journal f. d. reine u. angew. Math., 298 (1978), 182-195. Zbl0368.20006MR58 #18498
- [6] tom DIECK (T.), Homotopy equivalent group representations and Picard groups of the Burnside ring and the character ring, Manuscripta math., 26 (1978), 179-200. Zbl0409.57037MR80b:20005
- [7] tom DIECK (T.), Semi-linear group actions on spheres: Dimension functions, in Proceedings Conf. Algebrai, Topology, Aarhus, 1978, Springer Lecture Notes, 763 (1979), 448-457. Zbl0434.57026MR81k:55004
- [8] tom DIECK (T.), Transformation groups and representation theory, Springer Lecture Notes, 766 (1979). Zbl0445.57023MR82c:57025
- [9] tom DIECK (T.) and PETRIE (T.), Geometric modules over the Burnside ring, Inventiones math., 47 (1978)c 273-287. Zbl0389.57008MR80h:57045
- [10] tom DIECK (T.) and PETRIE (T.), The homotopy structure of finite group actions on spheres, in Proceedings Conf. Algebraic Topology, Waterloo, 1978, Springer Lecture Notes, 741 (1979), 222-243. Zbl0416.57019MR82b:57030
- [11] DRESS (A.), Contributions to the theory of induced representations, in Batelle Institute Conference on Algebraic K-Theory II, Springer Lecture Notes, 342 (1973), 183-240. Zbl0331.18016MR52 #5787
- [12] HAUSCHILD (H.), Äquivariante Homotopie I, Arch. Math., 29 (1977), 158-165. Zbl0367.55013MR57 #7626
- [13] HAUSCHILD (H.), Äquivariante Whitehead Torsion, Manuscripta math., 26 (1978), 63-82. Zbl0402.57031MR80g:57023
- [14] HUPPERT (H.), Endliche Gruppen I, Springer, Berlin, Heidelberg, New York, 1967. Zbl0217.07201
- [15] ILLMAN (S.), Smooth equivariant triangulations of G-manifolds for G a finite group, Math. Ann., 233 (1978), 199-220. Zbl0359.57001MR58 #18474
- [16] JAMES (I. M.) and SEGAL (G. B.), On equivariant homotopy type, Topology, 17 (1978), 267-272. Zbl0403.57007MR80k:55045
- [17] LANG (S.), Algebra, Addison-Wesley, Reading, 1965. Zbl0193.34701MR33 #5416
- [18] MILNOR (J.), Singular points of complex hypersurfaces, Annals of Math. Studies, 61, Princeton Univ. Press, 1968. Zbl0184.48405MR39 #969
- [19] PETRIE (T.), G-maps and the projective class group, Comment. math. Helv., 51 (1976), 611-626. Zbl0365.55005MR57 #13992
- [20] PETRIE (T.), G-surgery, I. A Survey, in Proceedings Conf. Algebraic and Geometric Topology, Santa Barbara, 1977, Springer Lecture Notes, 664 (1978), 197-233. Zbl0403.57003MR80g:57049
- [21] RIM (D. S.), Modules over finite groups, Ann. of Math., 69 (1959), 700-712. Zbl0092.26104MR21 #3474
- [22] SWAN (R. G.), Induced representations and projective modules, Ann. of Math., 71 (1960), 552-578. Zbl0104.25102MR25 #2131
- [23] SWAN (R. G.), Periodic resolutions for finite groups, Ann. of Math., 72 (1960), 267-291. Zbl0096.01701MR23 #A2205
- [24] SWAN (R. G.) and EVANS (E. G.), K-theory of finite groups and orders, Springer Lecture Notes, 149 (1970). Zbl0205.32105MR46 #7310
- [25] TAYLOR (M. J.), Locallyfree class groups of groups of prime power order, Journal of Algebra, 50 (1978), 463-487. Zbl0377.20006MR57 #3193
- [26] WALL (C. T. C.), Finiteness conditions for CW-complexes, Ann. of Math., 81 (1965), 56-69. Zbl0152.21902MR30 #1515
- [27] WIRTHMÜLLER (K.), Equivariant S-duality, Arch. Math., 26 (1975), 427-431. Zbl0307.55010MR51 #11493
- [28] WOLF (J. A.), Spaces of constant curvature, McGraw-Hill, New York, 1967. Zbl0162.53304MR36 #829
- [29] tom DIECK (T.), Über projektive Moduln und Endlichkeitshindernisse bei Transformationsgruppen, Manuscripta math., 24 (1981), 135-155. Zbl0466.57015MR82k:57028
- [30] DOVERMANN (K. H.) and PETRIE (T.), Artin relation for smooth representations, Proc. Nat. Acad. Sci. U.S.A., 177 (1980), 5620-5621. Zbl0448.57019MR81m:57032
- [31] PETRIE (T.), Free metacyclic group actions on homotopy spheres, Ann. of Math., 94 (1971), 108-124. Zbl0224.57020MR45 #2744
- [32] SEGAL (G.), Equivariant stable homotopy, in Proc. Congrès intern. Math. Nice, 1970, t. 2, 59-63. Zbl0225.55014MR54 #11319
- [33] ILLMAN (S.), Equivariant algebraic topology, Thesis, Princeton, 1972.
- [34] tom DIECK (T.), Homotopiedarstellungen endlicher Gruppen : Dimensionsfunktionen, Inventiones math., 67 (1982), 231-252. Zbl0507.57026MR84b:57029
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.