An o-minimal structure which does not admit cellular decomposition
Olivier Le Gal[1]; Jean-Philippe Rolin[2]
- [1] University of Toronto Department of Mathematics Toronto, Ontario M5S 2E4 (Canada)
- [2] Université de Bourgogne IMB, UFR Sciences et Techniques 9, Avenue Alain Savary BP 47870 21078 Dijon (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 2, page 543-562
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- Edward Bierstone, Pierre D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. (1988), 5-42 Zbl0674.32002MR972342
- J. Denef, L. van den Dries, -adic and real subanalytic sets, Ann. of Math. (2) 128 (1988), 79-138 Zbl0693.14012MR951508
- Lou van den Dries, Tame topology and o-minimal structures, 248 (1998), Cambridge University Press, Cambridge Zbl0953.03045MR1633348
- Lou van den Dries, Patrick Speissegger, The real field with convergent generalized power series, Trans. Amer. Math. Soc. 350 (1998), 4377-4421 Zbl0905.03022MR1458313
- Lou van den Dries, Patrick Speissegger, The field of reals with multisummable series and the exponential function, Proc. London Math. Soc. (3) 81 (2000), 513-565 Zbl1062.03029MR1781147
- Andrei Gabrielov, Complements of subanalytic sets and existential formulas for analytic functions, Invent. Math. 125 (1996), 1-12 Zbl0851.32009MR1389958
- Bernard Malgrange, Idéaux de fonctions différentiables et division des distributions, Distributions (2003), 1-21, Ed. Éc. Polytech., Palaiseau MR2065138
- S. Mandelbrojt, Sur les fonctions indéfiniment dérivables, Acta Math. 72 (1940), 15-29 Zbl66.0245.01MR1783
- J.-P. Rolin, P. Speissegger, A. J. Wilkie, Quasianalytic Denjoy-Carleman classes and o-minimality, J. Amer. Math. Soc. 16 (2003), 751-777 (electronic) Zbl1095.26018MR1992825
- A. J. Wilkie, A theorem of the complement and some new o-minimal structures, Selecta Math. (N.S.) 5 (1999), 397-421 Zbl0948.03037MR1740677