Morse theory indomitable

Raoul Bott

Publications Mathématiques de l'IHÉS (1988)

  • Volume: 68, page 99-114
  • ISSN: 0073-8301

How to cite

top

Bott, Raoul. "Morse theory indomitable." Publications Mathématiques de l'IHÉS 68 (1988): 99-114. <http://eudml.org/doc/104046>.

@article{Bott1988,
author = {Bott, Raoul},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {moment map; symplectic geometry; survey; Thom-Smale-Witten complex; harmonic oscillator},
language = {eng},
pages = {99-114},
publisher = {Institut des Hautes Études Scientifiques},
title = {Morse theory indomitable},
url = {http://eudml.org/doc/104046},
volume = {68},
year = {1988},
}

TY - JOUR
AU - Bott, Raoul
TI - Morse theory indomitable
JO - Publications Mathématiques de l'IHÉS
PY - 1988
PB - Institut des Hautes Études Scientifiques
VL - 68
SP - 99
EP - 114
LA - eng
KW - moment map; symplectic geometry; survey; Thom-Smale-Witten complex; harmonic oscillator
UR - http://eudml.org/doc/104046
ER -

References

top
  1. [1] M. F. ATIYAH and R. BOTT, The Yang-Mills equations over Riemann surfaces, Phil. Trans. Roy. Soc., London, A308 (1982), 523-615. Zbl0509.14014MR85k:14006
  2. [2] M. F. ATIYAH and R. BOTT, The moment map and equivariant cohomology, Topology, 21 (1) (1984), 1-28. Zbl0521.58025MR85e:58041
  3. [3] J. J. DUISTERMAAT and G. J. HECKMAN, On the variation in the cohomology in the symplectic form of the reduced phase space, Invent. Math., 69 (1982), 259-268. Zbl0503.58015MR84h:58051a
  4. [4] A. FLOER, Morse theory for Lagrangian intersections, J. Diff. Geom., 28 (1988), 513-547. Zbl0674.57027MR90f:58058
  5. [5] B. HELFER, J. SJÖSTRAND, Points multiples en mécanique semiclassique IV, étude du complexe de Witten, Comm. Par. Diff. Equ., 10 (1985), 245-340. Zbl0597.35024
  6. [6] S. SMALE, Differentiable dynamical systems, Bull. Am. Math. Soc., 73 (1967), 747. Zbl0202.55202MR37 #3598
  7. [7] René THOM, Sur une partition en cellules associée à une fonction sur une variété, C.R. Acad. Sci. Paris, 228 (1949), 661-692. Zbl0034.20802MR10,558b
  8. [8] E. WITTEN, Supersymmetry and Morse theory, J. Diff. Geom., 17 (1982), 661-692. Zbl0499.53056MR84b:58111

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.