Critical sets in 3-space

Matthew Grayson; Charles Pugh

Publications Mathématiques de l'IHÉS (1993)

  • Volume: 77, page 5-61
  • ISSN: 0073-8301

How to cite

top

Grayson, Matthew, and Pugh, Charles. "Critical sets in 3-space." Publications Mathématiques de l'IHÉS 77 (1993): 5-61. <http://eudml.org/doc/104088>.

@article{Grayson1993,
author = {Grayson, Matthew, Pugh, Charles},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {flow; critical points; link},
language = {eng},
pages = {5-61},
publisher = {Institut des Hautes Études Scientifiques},
title = {Critical sets in 3-space},
url = {http://eudml.org/doc/104088},
volume = {77},
year = {1993},
}

TY - JOUR
AU - Grayson, Matthew
AU - Pugh, Charles
TI - Critical sets in 3-space
JO - Publications Mathématiques de l'IHÉS
PY - 1993
PB - Institut des Hautes Études Scientifiques
VL - 77
SP - 5
EP - 61
LA - eng
KW - flow; critical points; link
UR - http://eudml.org/doc/104088
ER -

References

top
  1. M. BROWN (1962), The monotone union of open n-cells is an open n-cell, Proc. AMS, 12, 812-814. Zbl0103.39305MR23 #A4129
  2. D. E. CHRISTIE (1944), Net homotopy for compacta, Trans. AMS, 56, 275-308. Zbl0060.41303MR6,97a
  3. R. CHURCHILL (1972), Isolated invariant sets in compact metric spaces, JDE, 12, 330-352. Zbl0238.54044MR49 #1536
  4. C. CONLEY (1978), Isolated invariant sets and the Morse index, CBMS regional conference series in math., number 38, AMS, Providence R.I. Zbl0397.34056MR80c:58009
  5. M. E. FEIGN (1988), Separation properties of codimension-1 immersions, Topology, 27, 319-321. Zbl0658.57019MR89g:57044
  6. R. H. FOX and E. ARTIN (1948), Some wild cells and spheres in three dimensional space, Annals of Math., 49, 979-990. Zbl0033.13602MR10,317g
  7. F. B. FULLER (1952), A note on trajectories in the solid torus, Annals of Math., 56, 438-439. Zbl0047.08901MR14,556j
  8. J. HARRISON and C. PUGH (1990), A critical fractal circle, preprint, U. of California, Berkeley. 
  9. J. HEMPEL (1976), 3-manifolds, Annals of Math. Studies #86, Princeton U. Press, Princeton, N.J. Zbl0345.57001MR54 #3702
  10. A. P. MORSE (1939), The behaviour of a function on its critical set, Annals of Math., 40, 62-70. Zbl0020.01205JFM65.0207.03
  11. M. MORSE (1934), The calculus of variations in the large, AMS Colloquium Publ. XVIII, N.Y. Zbl0011.02802JFM60.0450.01
  12. J. MUNKRES (1960), Obstructions to the smoothing of piecewise differentiable homeomorphisms, Annals of Math., 72, 521-554. Zbl0108.18101MR22 #12534
  13. V. V. NEMYTSKII and V. V. STEPANOV (1960), Qualitative theory of differential equations, Princeton U. Press, Princeton N. J. Zbl0089.29502MR22 #12258
  14. NORTON and PUGH (1991), Critical sets in the plane, Michigan J. Math, 38, 441-459. Zbl0785.58016MR92f:57032
  15. C. ROBINSON (1976), personnal communication with C. Conley. 
  16. C. ROBINSON (1990), personnal communication with C. Pugh. 
  17. D. ROLFSEN (1976), Knots and Links, Publish or Perish Press, Houston Texas. Zbl0339.55004MR58 #24236
  18. M. SAITO (1990), Links as critical sets, preprint, U. of Texas, Austin. 
  19. A. SARD (1942), The measure of the critical values of differentiable maps, Bull. AMS, 48, 883-890. Zbl0063.06720MR4,153c
  20. A. SHAPIRO and J. H. C. WHITEHEAD (1958), A proof and extension of Dehn's Lemma, Bull. AMS, 64, 174-178. Zbl0084.19104MR21 #2242
  21. M. SHUB (1987), Global Stability of dynamical systems, Springer-Verlag, N.Y. Zbl0606.58003MR87m:58086
  22. W. THURSTON (1990), personnal communication with M. Grayson. 
  23. H. WHITNEY (1935), A function not constant on a connected set of critical points, Duke Math. J., 1, 514-517. Zbl0013.05801JFM61.1117.01
  24. R. L. WILDER (1930), A converse to the Jordan Brouwer Separation Theorem, Trans. AMS, 32, 632-657. Zbl56.1125.05MR1501556JFM56.1125.05
  25. F. W. WILSON, Jr. (1969), Smoothing derivatives of functions and applications, Trans. AMS, 139, 413-428. Zbl0175.20203MR40 #4974
  26. F. W. WILSON, Jr. and J. YORKE (1973), Lyapunov functions and isolating blocks, JDE, 13, 106-123. Zbl0249.34037MR52 #6115

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.