Critical sets in 3-space
Publications Mathématiques de l'IHÉS (1993)
- Volume: 77, page 5-61
- ISSN: 0073-8301
Access Full Article
topHow to cite
topGrayson, Matthew, and Pugh, Charles. "Critical sets in 3-space." Publications Mathématiques de l'IHÉS 77 (1993): 5-61. <http://eudml.org/doc/104088>.
@article{Grayson1993,
author = {Grayson, Matthew, Pugh, Charles},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {flow; critical points; link},
language = {eng},
pages = {5-61},
publisher = {Institut des Hautes Études Scientifiques},
title = {Critical sets in 3-space},
url = {http://eudml.org/doc/104088},
volume = {77},
year = {1993},
}
TY - JOUR
AU - Grayson, Matthew
AU - Pugh, Charles
TI - Critical sets in 3-space
JO - Publications Mathématiques de l'IHÉS
PY - 1993
PB - Institut des Hautes Études Scientifiques
VL - 77
SP - 5
EP - 61
LA - eng
KW - flow; critical points; link
UR - http://eudml.org/doc/104088
ER -
References
top- M. BROWN (1962), The monotone union of open n-cells is an open n-cell, Proc. AMS, 12, 812-814. Zbl0103.39305MR23 #A4129
- D. E. CHRISTIE (1944), Net homotopy for compacta, Trans. AMS, 56, 275-308. Zbl0060.41303MR6,97a
- R. CHURCHILL (1972), Isolated invariant sets in compact metric spaces, JDE, 12, 330-352. Zbl0238.54044MR49 #1536
- C. CONLEY (1978), Isolated invariant sets and the Morse index, CBMS regional conference series in math., number 38, AMS, Providence R.I. Zbl0397.34056MR80c:58009
- M. E. FEIGN (1988), Separation properties of codimension-1 immersions, Topology, 27, 319-321. Zbl0658.57019MR89g:57044
- R. H. FOX and E. ARTIN (1948), Some wild cells and spheres in three dimensional space, Annals of Math., 49, 979-990. Zbl0033.13602MR10,317g
- F. B. FULLER (1952), A note on trajectories in the solid torus, Annals of Math., 56, 438-439. Zbl0047.08901MR14,556j
- J. HARRISON and C. PUGH (1990), A critical fractal circle, preprint, U. of California, Berkeley.
- J. HEMPEL (1976), 3-manifolds, Annals of Math. Studies #86, Princeton U. Press, Princeton, N.J. Zbl0345.57001MR54 #3702
- A. P. MORSE (1939), The behaviour of a function on its critical set, Annals of Math., 40, 62-70. Zbl0020.01205JFM65.0207.03
- M. MORSE (1934), The calculus of variations in the large, AMS Colloquium Publ. XVIII, N.Y. Zbl0011.02802JFM60.0450.01
- J. MUNKRES (1960), Obstructions to the smoothing of piecewise differentiable homeomorphisms, Annals of Math., 72, 521-554. Zbl0108.18101MR22 #12534
- V. V. NEMYTSKII and V. V. STEPANOV (1960), Qualitative theory of differential equations, Princeton U. Press, Princeton N. J. Zbl0089.29502MR22 #12258
- NORTON and PUGH (1991), Critical sets in the plane, Michigan J. Math, 38, 441-459. Zbl0785.58016MR92f:57032
- C. ROBINSON (1976), personnal communication with C. Conley.
- C. ROBINSON (1990), personnal communication with C. Pugh.
- D. ROLFSEN (1976), Knots and Links, Publish or Perish Press, Houston Texas. Zbl0339.55004MR58 #24236
- M. SAITO (1990), Links as critical sets, preprint, U. of Texas, Austin.
- A. SARD (1942), The measure of the critical values of differentiable maps, Bull. AMS, 48, 883-890. Zbl0063.06720MR4,153c
- A. SHAPIRO and J. H. C. WHITEHEAD (1958), A proof and extension of Dehn's Lemma, Bull. AMS, 64, 174-178. Zbl0084.19104MR21 #2242
- M. SHUB (1987), Global Stability of dynamical systems, Springer-Verlag, N.Y. Zbl0606.58003MR87m:58086
- W. THURSTON (1990), personnal communication with M. Grayson.
- H. WHITNEY (1935), A function not constant on a connected set of critical points, Duke Math. J., 1, 514-517. Zbl0013.05801JFM61.1117.01
- R. L. WILDER (1930), A converse to the Jordan Brouwer Separation Theorem, Trans. AMS, 32, 632-657. Zbl56.1125.05MR1501556JFM56.1125.05
- F. W. WILSON, Jr. (1969), Smoothing derivatives of functions and applications, Trans. AMS, 139, 413-428. Zbl0175.20203MR40 #4974
- F. W. WILSON, Jr. and J. YORKE (1973), Lyapunov functions and isolating blocks, JDE, 13, 106-123. Zbl0249.34037MR52 #6115
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.