Finite group actions and étale cohomology

Jeremy Rickard

Publications Mathématiques de l'IHÉS (1994)

  • Volume: 80, page 81-94
  • ISSN: 0073-8301

How to cite

top

Rickard, Jeremy. "Finite group actions and étale cohomology." Publications Mathématiques de l'IHÉS 80 (1994): 81-94. <http://eudml.org/doc/104101>.

@article{Rickard1994,
author = {Rickard, Jeremy},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {group actions; homology; étale cohomology},
language = {eng},
pages = {81-94},
publisher = {Institut des Hautes Études Scientifiques},
title = {Finite group actions and étale cohomology},
url = {http://eudml.org/doc/104101},
volume = {80},
year = {1994},
}

TY - JOUR
AU - Rickard, Jeremy
TI - Finite group actions and étale cohomology
JO - Publications Mathématiques de l'IHÉS
PY - 1994
PB - Institut des Hautes Études Scientifiques
VL - 80
SP - 81
EP - 94
LA - eng
KW - group actions; homology; étale cohomology
UR - http://eudml.org/doc/104101
ER -

References

top
  1. [1] M. ARTIN et al., SGA4 Théorie des topos et cohomologie étale des schémas, Lecture Notes in Mathematics, 269, 270, 305 (Berlin, Springer, 1972-1973). 
  2. [2] A. BEILINSON, J. BERNSTEIN et P. DELIGNE, Faisceaux pervers, Astérisque, 100 (Paris, Société mathématique de France, 1982). Zbl0536.14011MR86g:32015
  3. [3] M. BROUÉ, Isométries parfaites, types de blocs, catégories dérivées, Astérisque, 181-182 (Paris, Société mathématique de France, 1990), 61-92. Zbl0704.20010MR91i:20006
  4. [4] M. BROUÉ et L. PUIG, Characters and local structure in G-algebras, J. Algebra, 63 (1980), 306-317. Zbl0428.20005MR81j:20021
  5. [5] P. DELIGNE et G. LUSZTIG, Representations of reductive groups over finite fields, Ann. of Math., 103 (1976), 103-161. Zbl0336.20029MR52 #14076
  6. [6] A. GROTHENDIECK et al., SGA5 Cohomologie l-adique et fonctions L, Lecture Notes in Mathematics, 589 (Berlin, Springer, 1977). Zbl0345.00011
  7. [7] R. HARTSHORNE, Residues and duality, Lecture Notes in Mathematics, 20 (Berlin, Springer, 1966). Zbl0212.26101MR36 #5145
  8. [8] J. RICKARD, Derived equivalences as derived functors, J. London Math. Soc. (2), 43 (1991), 37-48. Zbl0683.16030MR92b:16043
  9. [9] L. L. SCOTT, Modular permutation representations, Trans. Amer. Math. Soc., 175 (1973), 101-121. Zbl0285.20012MR46 #9154
  10. [10] B. SRINIVASAN, Representations of finite Chevalley groups, Lecture Notes in Mathematics, 764 (Berlin, Springer, 1979). Zbl0434.20022MR83a:20054
  11. [11] J.-L. VERDIER, Catégories dérivées, état 0, Lecture Notes in Mathematics, 569 (Berlin, Springer, 1977), 262-311. Zbl0407.18008MR57 #3132

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.