Tameness on the boundary and Ahlfors' measure conjecture

Jeffrey Brock; Kenneth Bromberg; Richard Evans; Juan Souto

Publications Mathématiques de l'IHÉS (2003)

  • Volume: 98, page 145-166
  • ISSN: 0073-8301

Abstract

top
Let N be a complete hyperbolic 3-manifold that is an algebraic limit of geometrically finite hyperbolic 3-manifolds. We show N is homeomorphic to the interior of a compact 3-manifold, or tame, if one of the following conditions holds: 1. N has non-empty conformal boundary, 2. N is not homotopy equivalent to a compression body, or 3. N is a strong limit of geometrically finite manifolds. The first case proves Ahlfors’ measure conjecture for kleinian groups in the closure of the geometrically finite locus: given any algebraic limit Γ of geometrically finite kleinian groups, the limit set of Γ is either of Lebesgue measure zero or all of Ĉ. Thus, Ahlfors’ conjecture is reduced to the density conjecture of Bers, Sullivan, and Thurston.

How to cite

top

Brock, Jeffrey, et al. "Tameness on the boundary and Ahlfors' measure conjecture." Publications Mathématiques de l'IHÉS 98 (2003): 145-166. <http://eudml.org/doc/104194>.

@article{Brock2003,
abstract = {Let N be a complete hyperbolic 3-manifold that is an algebraic limit of geometrically finite hyperbolic 3-manifolds. We show N is homeomorphic to the interior of a compact 3-manifold, or tame, if one of the following conditions holds: 1. N has non-empty conformal boundary, 2. N is not homotopy equivalent to a compression body, or 3. N is a strong limit of geometrically finite manifolds. The first case proves Ahlfors’ measure conjecture for kleinian groups in the closure of the geometrically finite locus: given any algebraic limit Γ of geometrically finite kleinian groups, the limit set of Γ is either of Lebesgue measure zero or all of Ĉ. Thus, Ahlfors’ conjecture is reduced to the density conjecture of Bers, Sullivan, and Thurston.},
author = {Brock, Jeffrey, Bromberg, Kenneth, Evans, Richard, Souto, Juan},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Marden's tameness conjecture; Ahlfors measure conjecture; hyperbolic 3-manifold},
language = {eng},
pages = {145-166},
publisher = {Springer},
title = {Tameness on the boundary and Ahlfors' measure conjecture},
url = {http://eudml.org/doc/104194},
volume = {98},
year = {2003},
}

TY - JOUR
AU - Brock, Jeffrey
AU - Bromberg, Kenneth
AU - Evans, Richard
AU - Souto, Juan
TI - Tameness on the boundary and Ahlfors' measure conjecture
JO - Publications Mathématiques de l'IHÉS
PY - 2003
PB - Springer
VL - 98
SP - 145
EP - 166
AB - Let N be a complete hyperbolic 3-manifold that is an algebraic limit of geometrically finite hyperbolic 3-manifolds. We show N is homeomorphic to the interior of a compact 3-manifold, or tame, if one of the following conditions holds: 1. N has non-empty conformal boundary, 2. N is not homotopy equivalent to a compression body, or 3. N is a strong limit of geometrically finite manifolds. The first case proves Ahlfors’ measure conjecture for kleinian groups in the closure of the geometrically finite locus: given any algebraic limit Γ of geometrically finite kleinian groups, the limit set of Γ is either of Lebesgue measure zero or all of Ĉ. Thus, Ahlfors’ conjecture is reduced to the density conjecture of Bers, Sullivan, and Thurston.
LA - eng
KW - Marden's tameness conjecture; Ahlfors measure conjecture; hyperbolic 3-manifold
UR - http://eudml.org/doc/104194
ER -

References

top
  1. 1. W. Abikoff, Degenerating families of Riemann surfaces, Ann. Math., 105 (1977), 29–44. Zbl0347.32010MR442293
  2. 2. L. Ahlfors, Finitely generated Kleinian groups, Am. J. Math., 86 (1964), 413–429. Zbl0133.04201MR167618
  3. 3. L. Ahlfors, Fundamental polyhedrons and limit point sets of Kleinian groups, Proc. Natl. Acad. Sci. USA, 55 (1966), 251–254. Zbl0132.30801MR194970
  4. 4. J. Anderson and R. Canary, Cores of hyperbolic 3-manifolds and limits of Kleinian groups, Am. J. Math., 118 (1996), 745–779. Zbl0863.30048MR1400058
  5. 5. J. Anderson and R. Canary, Cores of hyperbolic 3-manifolds and limits of Kleinian groups II, J. Lond. Math. Soc., 61 (2000), 489–505. Zbl0959.30028MR1760675
  6. 6. R. Benedetti and C. Petronio, Lectures on Hyperbolic Geometry, Springer-Verlag, 1992. Zbl0768.51018MR1219310
  7. 7. F. Bonahon, Cobordism of automorphisms of surfaces, Ann. Sci. Éc. Norm. Supér., 16 (1983), 237–270. Zbl0535.57016MR732345
  8. 8. F. Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. Math., 124 (1986), 71–158. Zbl0671.57008MR847953
  9. 9. F. Bonahon and J. P. Otal, Variétés hyperboliques à géodésiques arbitrairement courtes, Bull. Lond. Math. Soc., 20 (1988), 255–261. Zbl0648.53027MR931188
  10. 10. J. Brock, Iteration of mapping classes and limits of hyperbolic 3-manifolds, Invent. Math., 143 (2001), 523–570. Zbl0969.57011MR1817644
  11. 11. J. Brock and K. Bromberg, Cone Manifolds and the Density Conjecture, To appear in the proceedings of the Warwick conference ‘Kleinian groups and hyperbolic 3-manifolds,’ arXiv:mathGT/0210484 (2002). Zbl1051.57016
  12. 12. J. Brock and K. Bromberg, On the density of geometrically finite Kleinian groups, Accepted to Acta Math., arXiv:mathGT/0212189 (2002). Zbl1055.57020MR2079598
  13. 13. K. Bromberg, Hyperbolic Dehn surgery on geometrically infinite 3-manifolds, Preprint (2000). 
  14. 14. K. Bromberg, Rigidity of geometrically finite hyperbolic cone-manifolds, To appear, Geom. Dedicata, arXiv:mathGT/0009149 (2000). Zbl1057.53029MR2057249
  15. 15. K. Bromberg, Hyperbolic cone manifolds, short geodesics, and Schwarzian derivatives, Preprint, arXiv:mathGT/0211401 (2002). Zbl1061.30037MR2083468
  16. 16. K. Bromberg, Projective structures with degenerate holonomy and the Bers density conjecture, Preprint, arXiv:mathGT/0211402 (2002). Zbl1137.30014MR2342691
  17. 17. R. Brooks and J. P. Matelski, Collars for Kleinian Groups, Duke Math. J., 49 (1982), 163–182. Zbl0484.30029MR650375
  18. 18. R. D. Canary, Ends of hyperbolic 3-manifolds, J. Am. Math. Soc., 6 (1993), 1–35. Zbl0810.57006MR1166330
  19. 19. R. D. Canary, Geometrically tame hyperbolic 3-manifolds, In Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), volume 54 of Proc. Symp. Pure Math., pp. 99–109. Am. Math. Soc., 1993. Zbl0798.30031MR1216615
  20. 20. R. D. Canary, D. B. A. Epstein and P. Green, Notes on notes of Thurston. In Analytical and Geometric Aspects of Hyperbolic Space, pp. 3–92. Cambridge University Press, 1987. Zbl0612.57009MR903850
  21. 21. R. D. Canary and Y. N. Minsky, On limits of tame hyperbolic 3-manifolds, J. Differ. Geom., 43 (1996), 1–41. Zbl0856.57011MR1424418
  22. 22. C. J. Earle and A. Marden, Geometric complex coordinates for Teichmüller space, In preparation. Zbl1264.30031
  23. 23. R. Evans, Deformation spaces of hyperbolic 3-manifolds: strong convergence and tameness, Ph.D. Thesis, Unversity of Michigan (2000). 
  24. 24. R. Evans. Tameness persists in weakly type-preserving strong limits, Preprint. Zbl1058.57010MR2075479
  25. 25. C. Hodgson and S. Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differ. Geom., 48 (1998), 1–59. Zbl0919.57009MR1622600
  26. 26. C. Hodgson and S. Kerckhoff, Universal bounds for hyperbolic Dehn surgery, Preprint, arXiv:math.GT/0204345 (2002). Zbl1087.57011MR2178964
  27. 27. C. Hodgson and S. Kerckhoff, The shape of hyperbolic Dehn surgery space, In preparation (2002). Zbl1144.57015
  28. 28. S. Kerckhoff and W. Thurston, Non-continuity of the action of the modular group at Bers’ boundary of Teichmüller space, Invent. Math., 100 (1990), 25–48. Zbl0698.32014
  29. 29. R. Kulkarni and P. Shalen, On Ahlfors’ finiteness theorem, Adv. Math., 76 (1989), 155–169. Zbl0684.57019
  30. 30. A. Marden, The geometry of finitely generated kleinian groups, Ann. Math., 99 (1974), 383–462. Zbl0282.30014MR349992
  31. 31. A. Marden, Geometrically finite Kleinian groups and their deformation spaces, In Discrete groups and automorphic functions, Academic Press (1977), pp. 259–293. Academic Press, 1977. MR494117
  32. 32. B. Maskit, On boundaries of Teichmüller spaces and on kleinian groups: II, Ann. Math., 91 (1970), 607–639. Zbl0197.06003MR297993
  33. 33. B. Maskit, Kleinian Groups, Springer-Verlag, 1988. Zbl0627.30039MR959135
  34. 34. D. McCullough, Compact submanifolds of 3-manifolds with boundary, Quart. J. Math. Oxf., 37 (1986), 299–307. Zbl0628.57008MR854628
  35. 35. C. McMullen, The classification of conformal dynamical systems, In Current Developments in Mathematics, 1995, pp. 323–360. International Press, 1995. Zbl0908.30028MR1474980
  36. 36. C. McMullen, Renormalization and 3-Manifolds Which Fiber Over the Circle, Annals of Math Studies 142, Princeton University Press, 1996. Zbl0860.58002MR1401347
  37. 37. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Math. Studies 78, Princeton University Press, 1972. Zbl0265.53039
  38. 38. K. Ohshika, Kleinian groups which are limits of geometrically finite groups, Preprint. Zbl1078.57015
  39. 39. P. Scott, Compact submanifolds of 3-manifolds, J. Lond. Math. Soc., (2) 7 (1973), 246–250. Zbl0266.57001MR326737
  40. 40. D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, In Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference. Annals of Math. Studies 97, Princeton, 1981. Zbl0567.58015MR624833
  41. 41. D. Sullivan, Quasiconformal homeomorphisms and dynamics II: Structural stability implies hyperbolicity for Kleinian groups, Acta Math., 155 (1985), 243–260. Zbl0606.30044MR806415
  42. 42. W. P. Thurston, Geometry and Topology of Three-Manifolds, Princeton Lecture Notes, 1979. 
  43. 43. W. P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Am. Math. Soc., 6 (1982), 357–381. Zbl0496.57005MR648524
  44. 44. W. P. Thurston, Hyperbolic structures on 3-manifolds I: Deformations of acylindrical manifolds, Ann. Math., 124 (1986), 203–246. Zbl0668.57015MR855294
  45. 45. W. P. Thurston, Hyperbolic structures on 3-manifolds II: Surface groups and 3-manifolds which fiber over the circle, Preprint, arXiv:math.GT/9801045 (1986). MR855294

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.