Tameness on the boundary and Ahlfors' measure conjecture
Jeffrey Brock; Kenneth Bromberg; Richard Evans; Juan Souto
Publications Mathématiques de l'IHÉS (2003)
- Volume: 98, page 145-166
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topBrock, Jeffrey, et al. "Tameness on the boundary and Ahlfors' measure conjecture." Publications Mathématiques de l'IHÉS 98 (2003): 145-166. <http://eudml.org/doc/104194>.
@article{Brock2003,
abstract = {Let N be a complete hyperbolic 3-manifold that is an algebraic limit of geometrically finite hyperbolic 3-manifolds. We show N is homeomorphic to the interior of a compact 3-manifold, or tame, if one of the following conditions holds: 1. N has non-empty conformal boundary, 2. N is not homotopy equivalent to a compression body, or 3. N is a strong limit of geometrically finite manifolds. The first case proves Ahlfors’ measure conjecture for kleinian groups in the closure of the geometrically finite locus: given any algebraic limit Γ of geometrically finite kleinian groups, the limit set of Γ is either of Lebesgue measure zero or all of Ĉ. Thus, Ahlfors’ conjecture is reduced to the density conjecture of Bers, Sullivan, and Thurston.},
author = {Brock, Jeffrey, Bromberg, Kenneth, Evans, Richard, Souto, Juan},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Marden's tameness conjecture; Ahlfors measure conjecture; hyperbolic 3-manifold},
language = {eng},
pages = {145-166},
publisher = {Springer},
title = {Tameness on the boundary and Ahlfors' measure conjecture},
url = {http://eudml.org/doc/104194},
volume = {98},
year = {2003},
}
TY - JOUR
AU - Brock, Jeffrey
AU - Bromberg, Kenneth
AU - Evans, Richard
AU - Souto, Juan
TI - Tameness on the boundary and Ahlfors' measure conjecture
JO - Publications Mathématiques de l'IHÉS
PY - 2003
PB - Springer
VL - 98
SP - 145
EP - 166
AB - Let N be a complete hyperbolic 3-manifold that is an algebraic limit of geometrically finite hyperbolic 3-manifolds. We show N is homeomorphic to the interior of a compact 3-manifold, or tame, if one of the following conditions holds: 1. N has non-empty conformal boundary, 2. N is not homotopy equivalent to a compression body, or 3. N is a strong limit of geometrically finite manifolds. The first case proves Ahlfors’ measure conjecture for kleinian groups in the closure of the geometrically finite locus: given any algebraic limit Γ of geometrically finite kleinian groups, the limit set of Γ is either of Lebesgue measure zero or all of Ĉ. Thus, Ahlfors’ conjecture is reduced to the density conjecture of Bers, Sullivan, and Thurston.
LA - eng
KW - Marden's tameness conjecture; Ahlfors measure conjecture; hyperbolic 3-manifold
UR - http://eudml.org/doc/104194
ER -
References
top- 1. W. Abikoff, Degenerating families of Riemann surfaces, Ann. Math., 105 (1977), 29–44. Zbl0347.32010MR442293
- 2. L. Ahlfors, Finitely generated Kleinian groups, Am. J. Math., 86 (1964), 413–429. Zbl0133.04201MR167618
- 3. L. Ahlfors, Fundamental polyhedrons and limit point sets of Kleinian groups, Proc. Natl. Acad. Sci. USA, 55 (1966), 251–254. Zbl0132.30801MR194970
- 4. J. Anderson and R. Canary, Cores of hyperbolic 3-manifolds and limits of Kleinian groups, Am. J. Math., 118 (1996), 745–779. Zbl0863.30048MR1400058
- 5. J. Anderson and R. Canary, Cores of hyperbolic 3-manifolds and limits of Kleinian groups II, J. Lond. Math. Soc., 61 (2000), 489–505. Zbl0959.30028MR1760675
- 6. R. Benedetti and C. Petronio, Lectures on Hyperbolic Geometry, Springer-Verlag, 1992. Zbl0768.51018MR1219310
- 7. F. Bonahon, Cobordism of automorphisms of surfaces, Ann. Sci. Éc. Norm. Supér., 16 (1983), 237–270. Zbl0535.57016MR732345
- 8. F. Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. Math., 124 (1986), 71–158. Zbl0671.57008MR847953
- 9. F. Bonahon and J. P. Otal, Variétés hyperboliques à géodésiques arbitrairement courtes, Bull. Lond. Math. Soc., 20 (1988), 255–261. Zbl0648.53027MR931188
- 10. J. Brock, Iteration of mapping classes and limits of hyperbolic 3-manifolds, Invent. Math., 143 (2001), 523–570. Zbl0969.57011MR1817644
- 11. J. Brock and K. Bromberg, Cone Manifolds and the Density Conjecture, To appear in the proceedings of the Warwick conference ‘Kleinian groups and hyperbolic 3-manifolds,’ arXiv:mathGT/0210484 (2002). Zbl1051.57016
- 12. J. Brock and K. Bromberg, On the density of geometrically finite Kleinian groups, Accepted to Acta Math., arXiv:mathGT/0212189 (2002). Zbl1055.57020MR2079598
- 13. K. Bromberg, Hyperbolic Dehn surgery on geometrically infinite 3-manifolds, Preprint (2000).
- 14. K. Bromberg, Rigidity of geometrically finite hyperbolic cone-manifolds, To appear, Geom. Dedicata, arXiv:mathGT/0009149 (2000). Zbl1057.53029MR2057249
- 15. K. Bromberg, Hyperbolic cone manifolds, short geodesics, and Schwarzian derivatives, Preprint, arXiv:mathGT/0211401 (2002). Zbl1061.30037MR2083468
- 16. K. Bromberg, Projective structures with degenerate holonomy and the Bers density conjecture, Preprint, arXiv:mathGT/0211402 (2002). Zbl1137.30014MR2342691
- 17. R. Brooks and J. P. Matelski, Collars for Kleinian Groups, Duke Math. J., 49 (1982), 163–182. Zbl0484.30029MR650375
- 18. R. D. Canary, Ends of hyperbolic 3-manifolds, J. Am. Math. Soc., 6 (1993), 1–35. Zbl0810.57006MR1166330
- 19. R. D. Canary, Geometrically tame hyperbolic 3-manifolds, In Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), volume 54 of Proc. Symp. Pure Math., pp. 99–109. Am. Math. Soc., 1993. Zbl0798.30031MR1216615
- 20. R. D. Canary, D. B. A. Epstein and P. Green, Notes on notes of Thurston. In Analytical and Geometric Aspects of Hyperbolic Space, pp. 3–92. Cambridge University Press, 1987. Zbl0612.57009MR903850
- 21. R. D. Canary and Y. N. Minsky, On limits of tame hyperbolic 3-manifolds, J. Differ. Geom., 43 (1996), 1–41. Zbl0856.57011MR1424418
- 22. C. J. Earle and A. Marden, Geometric complex coordinates for Teichmüller space, In preparation. Zbl1264.30031
- 23. R. Evans, Deformation spaces of hyperbolic 3-manifolds: strong convergence and tameness, Ph.D. Thesis, Unversity of Michigan (2000).
- 24. R. Evans. Tameness persists in weakly type-preserving strong limits, Preprint. Zbl1058.57010MR2075479
- 25. C. Hodgson and S. Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differ. Geom., 48 (1998), 1–59. Zbl0919.57009MR1622600
- 26. C. Hodgson and S. Kerckhoff, Universal bounds for hyperbolic Dehn surgery, Preprint, arXiv:math.GT/0204345 (2002). Zbl1087.57011MR2178964
- 27. C. Hodgson and S. Kerckhoff, The shape of hyperbolic Dehn surgery space, In preparation (2002). Zbl1144.57015
- 28. S. Kerckhoff and W. Thurston, Non-continuity of the action of the modular group at Bers’ boundary of Teichmüller space, Invent. Math., 100 (1990), 25–48. Zbl0698.32014
- 29. R. Kulkarni and P. Shalen, On Ahlfors’ finiteness theorem, Adv. Math., 76 (1989), 155–169. Zbl0684.57019
- 30. A. Marden, The geometry of finitely generated kleinian groups, Ann. Math., 99 (1974), 383–462. Zbl0282.30014MR349992
- 31. A. Marden, Geometrically finite Kleinian groups and their deformation spaces, In Discrete groups and automorphic functions, Academic Press (1977), pp. 259–293. Academic Press, 1977. MR494117
- 32. B. Maskit, On boundaries of Teichmüller spaces and on kleinian groups: II, Ann. Math., 91 (1970), 607–639. Zbl0197.06003MR297993
- 33. B. Maskit, Kleinian Groups, Springer-Verlag, 1988. Zbl0627.30039MR959135
- 34. D. McCullough, Compact submanifolds of 3-manifolds with boundary, Quart. J. Math. Oxf., 37 (1986), 299–307. Zbl0628.57008MR854628
- 35. C. McMullen, The classification of conformal dynamical systems, In Current Developments in Mathematics, 1995, pp. 323–360. International Press, 1995. Zbl0908.30028MR1474980
- 36. C. McMullen, Renormalization and 3-Manifolds Which Fiber Over the Circle, Annals of Math Studies 142, Princeton University Press, 1996. Zbl0860.58002MR1401347
- 37. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Math. Studies 78, Princeton University Press, 1972. Zbl0265.53039
- 38. K. Ohshika, Kleinian groups which are limits of geometrically finite groups, Preprint. Zbl1078.57015
- 39. P. Scott, Compact submanifolds of 3-manifolds, J. Lond. Math. Soc., (2) 7 (1973), 246–250. Zbl0266.57001MR326737
- 40. D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, In Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference. Annals of Math. Studies 97, Princeton, 1981. Zbl0567.58015MR624833
- 41. D. Sullivan, Quasiconformal homeomorphisms and dynamics II: Structural stability implies hyperbolicity for Kleinian groups, Acta Math., 155 (1985), 243–260. Zbl0606.30044MR806415
- 42. W. P. Thurston, Geometry and Topology of Three-Manifolds, Princeton Lecture Notes, 1979.
- 43. W. P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Am. Math. Soc., 6 (1982), 357–381. Zbl0496.57005MR648524
- 44. W. P. Thurston, Hyperbolic structures on 3-manifolds I: Deformations of acylindrical manifolds, Ann. Math., 124 (1986), 203–246. Zbl0668.57015MR855294
- 45. W. P. Thurston, Hyperbolic structures on 3-manifolds II: Surface groups and 3-manifolds which fiber over the circle, Preprint, arXiv:math.GT/9801045 (1986). MR855294
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.