Automorphism groups of polycyclic-by-finite groups and arithmetic groups
Oliver Baues[1]; Fritz Grunewald
- [1] ETH-Zürich, Departement Mathematik, Rämistrasse 101, Ch-8092 Zürich
Publications Mathématiques de l'IHÉS (2006)
- Volume: 104, page 213-268
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topBaues, Oliver, and Grunewald, Fritz. "Automorphism groups of polycyclic-by-finite groups and arithmetic groups." Publications Mathématiques de l'IHÉS 104 (2006): 213-268. <http://eudml.org/doc/104220>.
@article{Baues2006,
abstract = {We show that the outer automorphism group of a polycyclic-by-finite group is an arithmetic group. This result follows from a detailed structural analysis of the automorphism groups of such groups. We use an extended version of the theory of the algebraic hull functor initiated by Mostow. We thus make applicable refined methods from the theory of algebraic and arithmetic groups. We also construct examples of polycyclic-by-finite groups which have an automorphism group which does not contain an arithmetic group of finite index. Finally we discuss applications of our results to the groups of homotopy self-equivalences of K(Γ,1)-spaces and obtain an extension of arithmeticity results of Sullivan in rational homotopy theory.},
affiliation = {ETH-Zürich, Departement Mathematik, Rämistrasse 101, Ch-8092 Zürich},
author = {Baues, Oliver, Grunewald, Fritz},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {polycyclic-by-finite groups; outer automorphism groups; arithmetic groups; rational homotopy theory},
language = {eng},
pages = {213-268},
publisher = {Springer},
title = {Automorphism groups of polycyclic-by-finite groups and arithmetic groups},
url = {http://eudml.org/doc/104220},
volume = {104},
year = {2006},
}
TY - JOUR
AU - Baues, Oliver
AU - Grunewald, Fritz
TI - Automorphism groups of polycyclic-by-finite groups and arithmetic groups
JO - Publications Mathématiques de l'IHÉS
PY - 2006
PB - Springer
VL - 104
SP - 213
EP - 268
AB - We show that the outer automorphism group of a polycyclic-by-finite group is an arithmetic group. This result follows from a detailed structural analysis of the automorphism groups of such groups. We use an extended version of the theory of the algebraic hull functor initiated by Mostow. We thus make applicable refined methods from the theory of algebraic and arithmetic groups. We also construct examples of polycyclic-by-finite groups which have an automorphism group which does not contain an arithmetic group of finite index. Finally we discuss applications of our results to the groups of homotopy self-equivalences of K(Γ,1)-spaces and obtain an extension of arithmeticity results of Sullivan in rational homotopy theory.
LA - eng
KW - polycyclic-by-finite groups; outer automorphism groups; arithmetic groups; rational homotopy theory
UR - http://eudml.org/doc/104220
ER -
References
top- 1. L. Auslander, The automorphism group of a polycyclic group, Ann. Math. (2), 89 (1969), 314-322 Zbl0197.29902MR271202
- 2. L. Auslander, On a problem of Philip Hall, Ann. Math. (2), 86 (1967), 112-116 Zbl0149.26904MR218454
- 3. L. Auslander, F.E.A. Johnson, On a conjecture of C. T. C. Wall, J. Lond. Math. Soc., II. Ser., 14 (1976), 331-332 Zbl0364.22008MR423362
- 4. L. Auslander, G. Baumslag, Automorphism groups of finitely generated nilpotent groups, Bull. Am. Math. Soc., 73 (1967), 716-717 Zbl0149.26905MR217168
- 5. G. Baumslag, Automorphism groups of nilpotent groups, Am. J. Math., 91 (1969), 1003-1011 Zbl0208.03203MR255654
- 6. G. Baumslag, Lectures on Nilpotent Groups, A.M.S., Providence, R.I. (1971)
- 7. O. Baues, Finite extensions and unipotent shadows of affine crystallographic groups, C. R. Acad. Sci., Paris, Sér. I, Math., 335 (2002), 785-788 Zbl1023.20025MR1947699
- 8. O. Baues, Infrasolvmanifolds and rigidity of subgroups in solvable linear algebraic groups, Topology, 43 (2004), 903-924 Zbl1059.57022MR2061212
- 9. A. Borel, Arithmetic properties of linear algebraic groups, Proc. I.C.M. Stockholm (1962), 10–22. Zbl0134.16502MR175901
- 10. A. Borel, Density and maximality of arithmetic subgroups, J. Reine Angew. Math., 224 (1966), 78-89 Zbl0158.03105MR205999
- 11. A. Borel, Linear algebraic groups, second edn., Graduate Texts in Mathematics, vol. 126, Springer, New York, 1991. Zbl0726.20030MR1102012
- 12. A. Borel, J.-P. Serre, Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv., 39 (1964), 111-164 Zbl0143.05901MR181643
- 13. A. Borel, J. Tits, Groupes réductifs, Publ. Math., Inst. Hautes Étud. Sci., 27 (1965), 55-150 Zbl0145.17402MR207712
- 14. K.S. Brown, Cohomology of groups, Springer, New York–Berlin (1982) Zbl0584.20036MR672956
- 15. R.M. Bryant, J.R.J. Groves, Algebraic groups of automorphisms of nilpotent groups and Lie algebras, J. Lond. Math. Soc., II. Ser., 33 (1986), 453-466 Zbl0554.20008MR850961
- 16. P. Deligne, Extensions centrales non résiduellement finies de groupes arithmétiques, C. R. Acad. Sci., Paris, Sér. A-B, 287 (1978), A203-A208 Zbl0416.20042MR507760
- 17. M. du Sautoy, Polycyclic groups, analytic groups and algebraic groups, Proc. Lond. Math. Soc., III. Ser., 85 (2002), 62-92 Zbl1025.20022MR1901369
- 18. P.A. Griffiths, J.W. Morgan, Rational homotopy theory and differential forms, Birkhäuser, Boston, Mass. (1981) Zbl0474.55001MR641551
- 19. F. Grunewald, V. Platonov, Solvable arithmetic groups and arithmeticity problems, Duke Math. J., 10 (1999), 327-366 Zbl1039.20026MR1688145
- 20. F. Grunewald, V. Platonov, On finite extensions of arithmetic groups, C. R. Acad. Sci. Paris, 325 (1997), 1153-1158 Zbl0913.20034MR1490116
- 21. F. Grunewald, V. Platonov, Rigidity results for groups with radical, cohomology of finite groups and arithmeticity problems, Duke Math. J., 100 (1999), 321-358 Zbl1007.11029MR1722957
- 22. F. Grunewald, V. Platonov, Non-arithmetic polycyclic groups, C. R. Acad. Sci. Paris, 326 (1998), 1359-1364 Zbl0974.20035MR1649174
- 23. F. Grunewald, V. Platonov, Rigidity and automorphism groups of solvable arithmetic groups, C. R. Acad. Sci. Paris, 327 (1998), 427-432 Zbl0914.20043MR1652546
- 24. F. Grunewald, J. O’Halloran, Nilpotent groups and unipotent algebraic groups, J. Pure Appl. Algebra, 37 (1985), 299-313 Zbl0576.20019
- 25. F. Grunewald, D. Segal, On affine crystallographic groups, J. Differ. Geom., 40 (1994), 563-594 Zbl0822.20050MR1305981
- 26. J.-L. Koszul, Homologie et cohomologie des algébres de Lie, Bull. Soc. Math. Fr., 78 (1950), 65-127 Zbl0039.02901MR36511
- 27. L.A. Lambe, S.B. Priddy, Cohomology of nilmanifolds and torsion-free, nilpotent groups, Trans. Am. Math. Soc., 273 (1982), 39-55 Zbl0507.22008MR664028
- 28. S. Maclane, Homology, Springer, Berlin–Göttingen–Heidelberg (1963) Zbl0133.26502MR156879
- 29. A. I. Mal’cev, On a class of homogeneous spaces, Am. Math. Soc. Transl., 39 (1951), 1–33.
- 30. I. Ju. Merzljakov, Integer representation of the holomorphs of polycyclic groups, Algebra Log., 9 (1970), 539-558 Zbl0221.20043MR280578
- 31. G.D. Mostow, Representative functions on discrete groups and solvable arithmetic subgroups, Am. J. Math., 92 (1970), 1-32 Zbl0205.04406MR271267
- 32. G.D. Mostow, Some applications of representative functions to solvmanifolds, Am. J. Math., 93 (1971), 11-32 Zbl0228.22015MR283819
- 33. K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. Math. (2), 59 (1954), 531-538 Zbl0058.02202MR64057
- 34. P.F. Pickel, J. Roitberg, Automorphism groups of nilpotent groups and spaces, J. Pure Appl. Algebra, 150 (2000), 307-319 Zbl0962.20026MR1769359
- 35. V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Academic Press, Boston, MA, 1994. Zbl0841.20046MR1278263
- 36. M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 68, Springer, New York–Heidelberg, 1972. Zbl0254.22005MR507234
- 37. J. Roitberg, Genus and symmetry in homotopy theory, Math. Ann., 305 (1996), 381-386 Zbl0864.55004MR1391222
- 38. V.A. Romankov, Width of verbal subgroups in solvable groups, Algebra Log., 21 (1982), 60-72 Zbl0504.20020MR683939
- 39. J. W. Rutter, Spaces of homotopy self-equivalences, Lect. Notes Math., vol. 1662, Springer, Berlin, 1997. Zbl0889.55004MR1474967
- 40. D. Segal, Polycyclic groups, Cambridge Univ. Press, London (1983) Zbl0516.20001MR713786
- 41. D. Segal, On the outer automorphism group of a polycyclic group, Proceedings of the Second International Group Theory Conference (Bressanone, 1989), Rend. Circ. Mat. Palermo, II. Ser. (1990), Suppl. no. 23, 265–278. Zbl0703.20034MR1068367
- 42. J.-P. Serre, Arithmetic groups, Lond. Math. Soc. Lect. Notes, 36 (1979), 105-135 Zbl0432.20042MR564421
- 43. J.-P. Serre, Cohomologie des groupes discrets, Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970), pp. 77–169, Ann. Math. Stud., no. 70, Princeton Univ. Press, Princeton, N.J., 1971. Zbl0235.22020MR385006
- 44. D. Sullivan, Infinitesimal computations in topology, Publ. Math., Inst. Hautes Étud. Sci., 47 (1977), 269-331 Zbl0374.57002MR646078
- 45. D. Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. Math. (2), 100 (1974), 1-79 Zbl0355.57007MR442930
- 46. B.A.F. Wehrfritz, Two remarks on polycyclic groups, Bull. Lond. Math. Soc., 26 (1994), 543-548 Zbl0819.20036MR1315604
- 47. B.A.F. Wehrfritz, On the holomorphs of soluble groups of finite rank, J. Pure Appl. Algebra, 4 (1974), 55-69 Zbl0286.20031MR347985
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.