Commensurations of Out
Publications Mathématiques de l'IHÉS (2007)
- Volume: 105, page 1-48
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topFarb, Benson, and Handel, Michael. "Commensurations of Out$(F_n)$." Publications Mathématiques de l'IHÉS 105 (2007): 1-48. <http://eudml.org/doc/104223>.
@article{Farb2007,
abstract = {Let Out(Fn) denote the outer automorphism group of the free group Fn with n>3. We prove that for any finite index subgroup Γ<Out(Fn), the group Aut(Γ) is isomorphic to the normalizer of Γ in Out(Fn). We prove that Γ is co-Hopfian: every injective homomorphism Γ→Γ is surjective. Finally, we prove that the abstract commensurator Comm(Out(Fn)) is isomorphic to Out(Fn).},
author = {Farb, Benson, Handel, Michael},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {outer automorphisms of free groups; groups of outer automorphisms; subgroups of finite index; injective homomorphisms; almost fixed elements; inner automorphisms; normalizations; commensurator subgroup},
language = {eng},
pages = {1-48},
publisher = {Springer},
title = {Commensurations of Out$(F_n)$},
url = {http://eudml.org/doc/104223},
volume = {105},
year = {2007},
}
TY - JOUR
AU - Farb, Benson
AU - Handel, Michael
TI - Commensurations of Out$(F_n)$
JO - Publications Mathématiques de l'IHÉS
PY - 2007
PB - Springer
VL - 105
SP - 1
EP - 48
AB - Let Out(Fn) denote the outer automorphism group of the free group Fn with n>3. We prove that for any finite index subgroup Γ<Out(Fn), the group Aut(Γ) is isomorphic to the normalizer of Γ in Out(Fn). We prove that Γ is co-Hopfian: every injective homomorphism Γ→Γ is surjective. Finally, we prove that the abstract commensurator Comm(Out(Fn)) is isomorphic to Out(Fn).
LA - eng
KW - outer automorphisms of free groups; groups of outer automorphisms; subgroups of finite index; injective homomorphisms; almost fixed elements; inner automorphisms; normalizations; commensurator subgroup
UR - http://eudml.org/doc/104223
ER -
References
top- 1. M. Bestvina, M. Feighn, M. Handel, The Tits alternative for Out(Fn), I: Dynamics of exponentially-growing automorphisms, Ann. Math. (2), 151 (2000), 517-623 Zbl0984.20025MR1765705
- 2. M. Bestvina, M. Feighn, M. Handel, The Tits alternative for Out(Fn) II: A Kolchin type theorem, Ann. Math. (2), 161 (2005), 1-59 Zbl1139.20026MR2150382
- 3. M. Bestvina, M. Feighn, M. Handel, Solvable subgroups of Out(Fn) are virtually Abelian, Geom. Dedicata, 104 (2004), 71-96 Zbl1052.20027MR2043955
- 4. M. Bestvina, M. Handel, Train tracks and automorphisms of free groups, Ann. Math. (2), 135 (1992), 1-51 Zbl0757.57004MR1147956
- 5. M. Burger, P. Harpe, Constructing irreducible representations of discrete groups, Proc. Indian Acad. Sci., Math. Sci., 107 (1997), 223-235 Zbl0908.22005MR1467427
- 6. M. Bridson, K. Vogtmann, Automorphisms of automorphism groups of free groups, J. Algebra, 229 (2000), 785-792 Zbl0959.20027MR1769698
- 7. J. Dyer, E. Formanek, The automorphism group of a free group is complete, J. Lond. Math. Soc., II. Ser., 11 (1975), 181-190 Zbl0313.20021MR379683
- 8. M. Feighn and M. Handel, Abelian subgroups of Out(Fn), preprint, December 2006.
- 9. E. Formanek, C. Procesi, The automorphism group of a free group is not linear, J. Algebra, 149 (1992), 494-499 Zbl0780.20023MR1172442
- 10. N. Ivanov, J. McCarthy, On injective homomorphisms between Teichmüller modular groups, I, Invent. Math., 135 (1999), 425-486 Zbl0978.57014MR1666775
- 11. N. Ivanov, Mapping class groups, Handbook of Geometric Topology, North Holland, Amsterdam (2002), pp. 523-633 Zbl1002.57001MR1886678
- 12. N. Ivanov, Automorphisms of complexes of curves and of Teichmüller spaces, Int. Math. Res. Not., 1997 (1997), 651-666 Zbl0890.57018MR1460387
- 13. D.G. Khramtsov, Completeness of groups of outer automorphisms of free groups, Group-Theoretic Investigations (Russian), Akad. Nauk SSSR Ural. Otdel., Sverdlovsk (1990), pp. 128-143 Zbl0808.20036MR1159135
- 14. G.A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer, Berlin (1990) Zbl0732.22008MR1090825
- 15. G. Prasad, Discrete subgroups isomorphic to lattices in semisimple Lie groups, Am. J. Math., 98 (1976), 241-261 Zbl0336.22008MR399351
- 16. K. Vogtmann, Automorphisms of free groups and outer space, Geom. Dedicata, 94 (2002), 1-31 Zbl1017.20035MR1950871
- 17. R. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, Basel (1984) Zbl0571.58015MR776417
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.