Semi-Markov processes for reliability studies

Christiane Cocozza-Thivent; Michel Roussignol

ESAIM: Probability and Statistics (1997)

  • Volume: 1, page 207-223
  • ISSN: 1292-8100

How to cite

top

Cocozza-Thivent, Christiane, and Roussignol, Michel. "Semi-Markov processes for reliability studies." ESAIM: Probability and Statistics 1 (1997): 207-223. <http://eudml.org/doc/104233>.

@article{Cocozza1997,
author = {Cocozza-Thivent, Christiane, Roussignol, Michel},
journal = {ESAIM: Probability and Statistics},
language = {eng},
pages = {207-223},
publisher = {EDP Sciences},
title = {Semi-Markov processes for reliability studies},
url = {http://eudml.org/doc/104233},
volume = {1},
year = {1997},
}

TY - JOUR
AU - Cocozza-Thivent, Christiane
AU - Roussignol, Michel
TI - Semi-Markov processes for reliability studies
JO - ESAIM: Probability and Statistics
PY - 1997
PB - EDP Sciences
VL - 1
SP - 207
EP - 223
LA - eng
UR - http://eudml.org/doc/104233
ER -

References

top
  1. ALAM, M. ( 1984) Unavaibility analysis of protective systems subject to sequential testing. Int. J. Systems Sci. 15 1381-1395. Zbl0553.90053MR763768
  2. ASMUSSEN, S. ( 1992) Applied Probability and Queues. John Wiley & Sons. Zbl0624.60098MR889893
  3. CHEONG, C. K. ( 1968) Ergodic and ratio limit theorems for α-recurrent semi-Markov processes. Z. Wahrscheinlichkeitsth. 9 270-286. Zbl0162.49001MR230387
  4. CHEONG, C. K. ( 1970) Quasi-stationary distributions in semi-Markov processes. J. Appl. Prob. 7 388-399. Correction J. Appl. Prob. 7 788. Zbl0214.17003MR268956
  5. CINLAR, E. ( 1975) Introduction to stochastic processes. Prentice Hall. Zbl0341.60019MR380912
  6. CSENKI, A. ( 1995) An integral equation approach to the interval reliability of systems modelled by finite semi-Markov processes. Reliability Engineering and System Safety 47 37-45. 
  7. FLASPOHLER, D. C. and HOLMES, P. T. ( 1972) Additional quasi-stationary distributions for semi-Markov processes. J. Appl. Prob. 9 671-676. Zbl0241.60080MR346932
  8. LlMNIOS, N. ( 1993) A transient solution method for semi-Markov systems. Statistics et Probability letters 17 211-220. Zbl0777.60082MR1229939
  9. PAGES, A. and GONDRAN, M. ( 1980) Fiabilité des systèmes. Eyrolles-Collection de la Direction des Etudes et Recherches d'Electricité de France. Zbl0491.90029MR596408
  10. SENETA, E. ( 1973) Non-negative matrices and Markov chains. Springer-Verlag. Zbl0471.60001MR2209438

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.