Minimax results for estimating integrals of analytic processes

Karim Benhenni; Jacques Istas

ESAIM: Probability and Statistics (1998)

  • Volume: 2, page 109-121
  • ISSN: 1292-8100

How to cite


Benhenni, Karim, and Istas, Jacques. "Minimax results for estimating integrals of analytic processes." ESAIM: Probability and Statistics 2 (1998): 109-121. <>.

author = {Benhenni, Karim, Istas, Jacques},
journal = {ESAIM: Probability and Statistics},
keywords = {integrals of stochastic processes; analytic processes; linear estimators},
language = {eng},
pages = {109-121},
publisher = {EDP Sciences},
title = {Minimax results for estimating integrals of analytic processes},
url = {},
volume = {2},
year = {1998},

AU - Benhenni, Karim
AU - Istas, Jacques
TI - Minimax results for estimating integrals of analytic processes
JO - ESAIM: Probability and Statistics
PY - 1998
PB - EDP Sciences
VL - 2
SP - 109
EP - 121
LA - eng
KW - integrals of stochastic processes; analytic processes; linear estimators
UR -
ER -


  1. ABRAMOWITZ, M., STEGUN, I. ( 1965). Handbook of Mathematical Functions. Dover, New York. 
  2. BENHENNI, K., CAMBANIS, S. ( 1992a). Sampling designs for estimating integrals of stochastic processes. Ann. Statist. 20 161-194. Zbl0749.60033MR1150339
  3. BENHENNI, K., CAMBANIS, S. ( 1992b). Sampling designs for estimating integrals of stochastic processes using quadratic mean derivatives. In Approximation theory: proceedings of tthe sixth southeastern approximation theorists annual conference, G.A. Anastassiou ed., 93-123. Zbl0759.62024MR1174098
  4. BOJANOV, B. ( 1974). On an optimal quadrature formula. Comptes rendus de l Académie bulgare des Sciences 27 (5) 619-621. Zbl0334.65017MR365998
  5. CAMBANIS, S. ( 1985). Sampling designs for time series. In Time series in the time domain. Handbook of statistics, E.J. Hannan, P.R. Krishnaiah, M.M. Rao, eds. 5 337-362. MR831755
  6. CARTAN, H. ( 1978). Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes. Hermann, Paris. Zbl0094.04401
  7. CRAMER, H., LEADBETTER M.R. ( 1967). Stationary and related stochastic processes. Wiley, New-York. Zbl0162.21102MR217860
  8. DUREN, P. ( 1970). Theory of Hp spaces, New-York and London. Zbl0215.20203
  9. EUBANK, R. L., SMITH, P.L., SMITH, P.W. ( 1982). A note on optimal and asymptotically optimal designs for certain time series models. Ann. Statist. 10 1295-1301. Zbl0522.62055MR673665
  10. IBRAGIMOV, I., HAS'MINSKII, R. ( 1981). Statistical estimation, Asymptotic theory. Springer-Verlag, New-York. Zbl0467.62026MR620321
  11. ISTAS, J., LAREDO, C. ( 1997). Estimating functionals of a stochastic process. Adv. Appl. Prob. 10 (1) 249-270. Zbl0882.60033MR1432939
  12. LOEB, H., WERNER, H. ( 1974). Optimal numerical quadrature in Hp spaces. Math. Z. 138 111-117. Zbl0276.65012MR352824
  13. MICCHELI, C., RIVLIN, T. ( 1977). Optimal estimation in approximation theory. In A survey of optimal recovery C.A. Miccheli, T.J. Rivlin eds, Plenum, N.Y., 1-54. Zbl0386.93045MR445154
  14. MICCHELI, C., RIVLIN, T. ( 1984). Lectures on optimal recovery. In Numerical Analysis, Lecture Notes in Math. 1129 21-93, Springer. Zbl0698.41024MR799030
  15. NEWMAN, D. ( 1979). Quadrature formulae for Hp functions. Math. Z. 166 111-115. Zbl0402.65011MR525614
  16. PARZEN, E. ( 1959). Statistical inference on time series by Hilbert space methods. In Time series analysis papers, E. Parzen ed. Holden-Day, San Fransisco, 251-382. 
  17. RUDIN, W. ( 1966). Real and complex analysis. McGraw-Hill, New-York. Zbl0142.01701MR210528
  18. SACKS, J., YLVISAKER, D. ( 1966). Designs for regression problem problems with correlated errors. Ann. Math. Stat. 37 66-89. Zbl0152.17503MR192601
  19. SACKS, J., YLVISAKER, D. ( 1968). Designs for regression problem problems with correlated errors II. Ann. Math. Stat. 39 49-69. Zbl0165.21505MR220424
  20. SACKS, J., YLVISAKER, D. ( 1970). Designs for regression problem problems with correlated errors III. Ann. Math. Stat. 41 2057-2074. Zbl0234.62025MR270530
  21. SACKS, J., YLVISAKER, D. ( 1971). Statistical designs and integral approximation. In Proceedings of the twelfth biennial canadian mathematical society seminar R. Pyke eds. Canadian Mathematical Congress, 115-136. Zbl0291.62090MR277069
  22. STEIN, M. ( 1995). Predicting integrals of stochastic processes. Ann. Appl. Prob. 5 (1) 158-170. Zbl0820.62081MR1325047
  23. WAHBA, G. ( 1990). Spline models for observational data. S.I.A.M., Philadelphia, Pennsylvania. Zbl0813.62001MR1045442

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.