An almost sure limit theorem for moving averages of random variables between the strong law of large numbers and the Erdös-Rényi law

Hartmut Lanzinger

ESAIM: Probability and Statistics (1998)

  • Volume: 2, page 163-183
  • ISSN: 1292-8100

How to cite

top

Lanzinger, Hartmut. "An almost sure limit theorem for moving averages of random variables between the strong law of large numbers and the Erdös-Rényi law." ESAIM: Probability and Statistics 2 (1998): 163-183. <http://eudml.org/doc/104248>.

@article{Lanzinger1998,
author = {Lanzinger, Hartmut},
journal = {ESAIM: Probability and Statistics},
keywords = {almost sure limit theorem; increments of partial sums; Erdős-Rényi-Shepp law},
language = {eng},
pages = {163-183},
publisher = {EDP Sciences},
title = {An almost sure limit theorem for moving averages of random variables between the strong law of large numbers and the Erdös-Rényi law},
url = {http://eudml.org/doc/104248},
volume = {2},
year = {1998},
}

TY - JOUR
AU - Lanzinger, Hartmut
TI - An almost sure limit theorem for moving averages of random variables between the strong law of large numbers and the Erdös-Rényi law
JO - ESAIM: Probability and Statistics
PY - 1998
PB - EDP Sciences
VL - 2
SP - 163
EP - 183
LA - eng
KW - almost sure limit theorem; increments of partial sums; Erdős-Rényi-Shepp law
UR - http://eudml.org/doc/104248
ER -

References

top
  1. DE ACOSTA, A. and KUELBS, J. ( 1983). Limit theorems for moving averages of independent random vectors. Z. Wahrscheinlichkeitstheorie verw. Geb. 64, 67-123. Zbl0498.60008MR710649
  2. BINGHAM, N.H. ( 1985). On Tauberian theorems in probability theory. Nieuw. Arch. Wisk. (4) 3. 2 143-149. Zbl1138.60311MR811594
  3. BINGHAM, N.H. ( 1988). Moving averages, in: Almost everywhere convergence I. Academic Press. 131-145. Zbl0684.60023MR1035241
  4. BINGHAM, N.H. and GOLDIE, C.M. ( 1983). On one-sided Tauberian conditions. Analysis. 3, 159-188. Zbl0497.40003MR756113
  5. BINGHAM, N.H. and GOLDIE, C.M. ( 1983). Riesz means and self-neglecting functions. Math. Z. 199, 443-454. Zbl0631.60038MR961822
  6. BINGHAM, N.H. and MAEJIMA, M. ( 1985). Summability methods and almost sure convergence. Z. Wahrscheinlichkeitstheorie verw. Geb. 68, 383-392. Zbl0551.60037MR771473
  7. BINGHAM, N.H. and STADTMÜLLER, U. ( 1990). Jakimovski methods and almost sure convergence, in: Disorder in Physical Systems. Grimmett, Welsh Eds.; Clarendon Press, Oxford. 5-17. Zbl0723.60029MR1064552
  8. BINGHAM, N.H. and TENENBAUM, G.( 1986). Riesz and Valiron means and fractional moments. Math. Proc. Cambridge Philos. Soc. 99, 143-149. Zbl0585.40006MR809509
  9. BINGHAM, N.H., GOLDIE, C.M. and TEUGELS, J.L. ( 1987). Regular variation. Cambridge University Press. Zbl0617.26001MR898871
  10. CHOW, Y.S. ( 1973). Delayed sums and Borel summability of independent, identically distributed random variables. Bull. Inst. Math. Acad. Sinica. 1, 207-220. Zbl0296.60014MR343357
  11. CSÖRGÖ, M. and STEINEBACH, J. ( 1981). Improved Erdös-Rényi and strong approximation laws for increments of partial sums. Ann. Probab. 9, 988-996. Zbl0477.60034MR632971
  12. DEHEUVELS, P. and DEVROYE, L. ( 1987). Limit laws of Erdös-Rényi-Shepp type. Ann. Probab. 15, 1363-1386. Zbl0637.60039MR905337
  13. ERDÖS, P. and RÉNYI, A. ( 1970). On a new law of large numbers. J. Anal. Math. 23, 103-111. Zbl0225.60015MR272026
  14. FELLER, W. ( 1968). An extension of the law of the iterated logarithm to variables without variance. J. Math. Mech. 18, 343-355. Zbl0254.60016MR233399
  15. GANTERT, N. ( 1996). Large deviations for a heavy-tailed mixing sequence. Preprint. 
  16. GRIFFIN, P.S. ( 1988). The influence of extremes on the law of the iterated logarithm. Probab. Theory Related Fields. 77, 241-270. Zbl0621.60033MR927240
  17. GRIFFIN, P.S. ( 1988a). Non-classical law of the iterated logarithm behaviour for trimmed sums. Probab. Theory Related Fields. 78, 293-319. Zbl0643.60026MR945116
  18. KIESEL, R. ( 1993). General Nörlund Transforms and Power series Methods. Math. Z. 214, 273-286. Zbl0791.40004MR1240889
  19. KIESEL, R. ( 1993a). Power series methods and almost sure covergence. Math. Proc. Cambridge Philos. Soc. 113, 195-205. Zbl0787.60038MR1188829
  20. KIESEL, R. and STADTMÜLLER, U. ( 1996). Erdös-Rényi-Shepp-Laws and weighted sums of i.i.d. random variables. J. Theoret. Probab. 6, 961-982. Zbl0878.60028MR1419871
  21. KOLMOGOROFF, A.N. ( 1930). Sur la loi forte des grands nombres. C. R. Acad. Sci. Paris. 191, 910-912. Zbl56.0445.06JFM56.0445.06
  22. KOLMOGOROFF, A.N. ( 1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer Verlag. Zbl0007.21601MR494348
  23. KOMLÓS, J., MAJOR, P. and TUSNÁDY, G. ( 1975). An approximation of partial sums of independent rv's and the sample df. I. Z. Wahrscheinlichkeitstheorie verw. Geb. 32, 111-131. Zbl0308.60029MR375412
  24. KOMLÓS, J., MAJOR, P. and TUSNÁDY, G. ( 1976). An approximation of partial sums of independent rv's and the sample df. II. Z. Wahrscheinlichkeitstheorie verw. Geb. 34, 33-58. Zbl0307.60045MR402883
  25. LAI, T.L. ( 1974). Summability methods for independent, identically distributed random variables. Proc. Amer. Math. Soc. 45, 253-261. Zbl0339.60048MR356194
  26. LAI, T.L. ( 1974a). Limit theorems for delayed sums. Ann. Probab. 2, 432-440. Zbl0305.60009MR356193
  27. MAJOR, P. ( 1976). The approximation of partial sums of independent rv's. Z. Wahrscheinlichkeitstheorie verw. Geb. 35, 213-220. Zbl0338.60031MR415743
  28. MORI, T. ( 1976); The strong law of large numbers when extreme terms are excluded from sums. Z. Wahrscheinlichkeitstheorie verw. Geb. 36, 189-194. Zbl0325.60033MR423494
  29. MORI, T. ( 1977); Stability for sums of i.i.d. random variables when extreme terms are excluded. Z. Wahrscheinlichkeitstheorie verw. Geb. 40, 159-167. Zbl0349.60054MR458542
  30. NAGAEV, S.V. ( 1979). Large deviations of sums of independent random variables. Ann. Probab. 7, 745-789. Zbl0418.60033MR542129
  31. SHAO, Q.-M. ( 1989). On a problem of Csörgö and Révész. Ann. Probab. 17(2), 809-812. Zbl0684.60020MR985391
  32. SHEPP, L.A. ( 1964). A limit law concerning moving averages. Ann. Math. Stat. 35(1), 424-428. Zbl0146.39101MR166818
  33. STADTMÜLLER, U. ( 1995). On a family of summability methods and one-sided tauberian conditions. J. Math. Anal. Appl. 196, 99-119. Zbl0860.40004MR1359934
  34. STEINEBACH, J. ( 1978). On a necessary condition for the Erdös-Rényi law of large numbers. Proc. Amer. Math. Soc. 68, 97-100. Zbl0347.60029MR461637

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.