An almost sure limit theorem for moving averages of random variables between the strong law of large numbers and the Erdös-Rényi law

Hartmut Lanzinger

ESAIM: Probability and Statistics (1998)

  • Volume: 2, page 163-183
  • ISSN: 1292-8100

How to cite

top

Lanzinger, Hartmut. "An almost sure limit theorem for moving averages of random variables between the strong law of large numbers and the Erdös-Rényi law." ESAIM: Probability and Statistics 2 (1998): 163-183. <http://eudml.org/doc/104248>.

@article{Lanzinger1998,
author = {Lanzinger, Hartmut},
journal = {ESAIM: Probability and Statistics},
keywords = {almost sure limit theorem; increments of partial sums; Erdős-Rényi-Shepp law},
language = {eng},
pages = {163-183},
publisher = {EDP Sciences},
title = {An almost sure limit theorem for moving averages of random variables between the strong law of large numbers and the Erdös-Rényi law},
url = {http://eudml.org/doc/104248},
volume = {2},
year = {1998},
}

TY - JOUR
AU - Lanzinger, Hartmut
TI - An almost sure limit theorem for moving averages of random variables between the strong law of large numbers and the Erdös-Rényi law
JO - ESAIM: Probability and Statistics
PY - 1998
PB - EDP Sciences
VL - 2
SP - 163
EP - 183
LA - eng
KW - almost sure limit theorem; increments of partial sums; Erdős-Rényi-Shepp law
UR - http://eudml.org/doc/104248
ER -

References

top
  1. DE ACOSTA, A. and KUELBS, J. ( 1983). Limit theorems for moving averages of independent random vectors. Z. Wahrscheinlichkeitstheorie verw. Geb. 64, 67-123. Zbl0498.60008MR710649
  2. BINGHAM, N.H. ( 1985). On Tauberian theorems in probability theory. Nieuw. Arch. Wisk. (4) 3. 2 143-149. Zbl1138.60311MR811594
  3. BINGHAM, N.H. ( 1988). Moving averages, in: Almost everywhere convergence I. Academic Press. 131-145. Zbl0684.60023MR1035241
  4. BINGHAM, N.H. and GOLDIE, C.M. ( 1983). On one-sided Tauberian conditions. Analysis. 3, 159-188. Zbl0497.40003MR756113
  5. BINGHAM, N.H. and GOLDIE, C.M. ( 1983). Riesz means and self-neglecting functions. Math. Z. 199, 443-454. Zbl0631.60038MR961822
  6. BINGHAM, N.H. and MAEJIMA, M. ( 1985). Summability methods and almost sure convergence. Z. Wahrscheinlichkeitstheorie verw. Geb. 68, 383-392. Zbl0551.60037MR771473
  7. BINGHAM, N.H. and STADTMÜLLER, U. ( 1990). Jakimovski methods and almost sure convergence, in: Disorder in Physical Systems. Grimmett, Welsh Eds.; Clarendon Press, Oxford. 5-17. Zbl0723.60029MR1064552
  8. BINGHAM, N.H. and TENENBAUM, G.( 1986). Riesz and Valiron means and fractional moments. Math. Proc. Cambridge Philos. Soc. 99, 143-149. Zbl0585.40006MR809509
  9. BINGHAM, N.H., GOLDIE, C.M. and TEUGELS, J.L. ( 1987). Regular variation. Cambridge University Press. Zbl0617.26001MR898871
  10. CHOW, Y.S. ( 1973). Delayed sums and Borel summability of independent, identically distributed random variables. Bull. Inst. Math. Acad. Sinica. 1, 207-220. Zbl0296.60014MR343357
  11. CSÖRGÖ, M. and STEINEBACH, J. ( 1981). Improved Erdös-Rényi and strong approximation laws for increments of partial sums. Ann. Probab. 9, 988-996. Zbl0477.60034MR632971
  12. DEHEUVELS, P. and DEVROYE, L. ( 1987). Limit laws of Erdös-Rényi-Shepp type. Ann. Probab. 15, 1363-1386. Zbl0637.60039MR905337
  13. ERDÖS, P. and RÉNYI, A. ( 1970). On a new law of large numbers. J. Anal. Math. 23, 103-111. Zbl0225.60015MR272026
  14. FELLER, W. ( 1968). An extension of the law of the iterated logarithm to variables without variance. J. Math. Mech. 18, 343-355. Zbl0254.60016MR233399
  15. GANTERT, N. ( 1996). Large deviations for a heavy-tailed mixing sequence. Preprint. 
  16. GRIFFIN, P.S. ( 1988). The influence of extremes on the law of the iterated logarithm. Probab. Theory Related Fields. 77, 241-270. Zbl0621.60033MR927240
  17. GRIFFIN, P.S. ( 1988a). Non-classical law of the iterated logarithm behaviour for trimmed sums. Probab. Theory Related Fields. 78, 293-319. Zbl0643.60026MR945116
  18. KIESEL, R. ( 1993). General Nörlund Transforms and Power series Methods. Math. Z. 214, 273-286. Zbl0791.40004MR1240889
  19. KIESEL, R. ( 1993a). Power series methods and almost sure covergence. Math. Proc. Cambridge Philos. Soc. 113, 195-205. Zbl0787.60038MR1188829
  20. KIESEL, R. and STADTMÜLLER, U. ( 1996). Erdös-Rényi-Shepp-Laws and weighted sums of i.i.d. random variables. J. Theoret. Probab. 6, 961-982. Zbl0878.60028MR1419871
  21. KOLMOGOROFF, A.N. ( 1930). Sur la loi forte des grands nombres. C. R. Acad. Sci. Paris. 191, 910-912. Zbl56.0445.06JFM56.0445.06
  22. KOLMOGOROFF, A.N. ( 1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer Verlag. Zbl0007.21601MR494348
  23. KOMLÓS, J., MAJOR, P. and TUSNÁDY, G. ( 1975). An approximation of partial sums of independent rv's and the sample df. I. Z. Wahrscheinlichkeitstheorie verw. Geb. 32, 111-131. Zbl0308.60029MR375412
  24. KOMLÓS, J., MAJOR, P. and TUSNÁDY, G. ( 1976). An approximation of partial sums of independent rv's and the sample df. II. Z. Wahrscheinlichkeitstheorie verw. Geb. 34, 33-58. Zbl0307.60045MR402883
  25. LAI, T.L. ( 1974). Summability methods for independent, identically distributed random variables. Proc. Amer. Math. Soc. 45, 253-261. Zbl0339.60048MR356194
  26. LAI, T.L. ( 1974a). Limit theorems for delayed sums. Ann. Probab. 2, 432-440. Zbl0305.60009MR356193
  27. MAJOR, P. ( 1976). The approximation of partial sums of independent rv's. Z. Wahrscheinlichkeitstheorie verw. Geb. 35, 213-220. Zbl0338.60031MR415743
  28. MORI, T. ( 1976); The strong law of large numbers when extreme terms are excluded from sums. Z. Wahrscheinlichkeitstheorie verw. Geb. 36, 189-194. Zbl0325.60033MR423494
  29. MORI, T. ( 1977); Stability for sums of i.i.d. random variables when extreme terms are excluded. Z. Wahrscheinlichkeitstheorie verw. Geb. 40, 159-167. Zbl0349.60054MR458542
  30. NAGAEV, S.V. ( 1979). Large deviations of sums of independent random variables. Ann. Probab. 7, 745-789. Zbl0418.60033MR542129
  31. SHAO, Q.-M. ( 1989). On a problem of Csörgö and Révész. Ann. Probab. 17(2), 809-812. Zbl0684.60020MR985391
  32. SHEPP, L.A. ( 1964). A limit law concerning moving averages. Ann. Math. Stat. 35(1), 424-428. Zbl0146.39101MR166818
  33. STADTMÜLLER, U. ( 1995). On a family of summability methods and one-sided tauberian conditions. J. Math. Anal. Appl. 196, 99-119. Zbl0860.40004MR1359934
  34. STEINEBACH, J. ( 1978). On a necessary condition for the Erdös-Rényi law of large numbers. Proc. Amer. Math. Soc. 68, 97-100. Zbl0347.60029MR461637

NotesEmbed ?

top

You must be logged in to post comments.