A lower bound on the growth exponent for loop-erased random walk in two dimensions

Gregory F. Lawler

ESAIM: Probability and Statistics (1999)

  • Volume: 3, page 1-21
  • ISSN: 1292-8100

How to cite

top

Lawler, Gregory F.. "A lower bound on the growth exponent for loop-erased random walk in two dimensions." ESAIM: Probability and Statistics 3 (1999): 1-21. <http://eudml.org/doc/104255>.

@article{Lawler1999,
author = {Lawler, Gregory F.},
journal = {ESAIM: Probability and Statistics},
keywords = {Beurling projection theorem; loop-erased walk},
language = {eng},
pages = {1-21},
publisher = {EDP Sciences},
title = {A lower bound on the growth exponent for loop-erased random walk in two dimensions},
url = {http://eudml.org/doc/104255},
volume = {3},
year = {1999},
}

TY - JOUR
AU - Lawler, Gregory F.
TI - A lower bound on the growth exponent for loop-erased random walk in two dimensions
JO - ESAIM: Probability and Statistics
PY - 1999
PB - EDP Sciences
VL - 3
SP - 1
EP - 21
LA - eng
KW - Beurling projection theorem; loop-erased walk
UR - http://eudml.org/doc/104255
ER -

References

top
  1. [1] Ahlfors L., Conformal Invariance. Topics in Geometric Function Theory. McGraw-Hill ( 1973). Zbl0272.30012MR357743
  2. [2] Billingsley P., Probability and Measure. 2nd ed., John Wiley ( 1986). Zbl0649.60001MR830424
  3. [3] Burdzy K. and Lawler G., Rigorous exponent inequalities for random walks. J. Phys. A. 2 3 ( 1990) L23-L28. Zbl0716.60080MR1034620
  4. [4] Duplantier B., Loop-erased self-avoiding walks in 2D. Physica A 191 ( 1992) 516-522. 
  5. [5] Fargason C., The percolation dimension of Brownian motion in three dimensions. Ph.D. dissertation, Duke University ( 1998). Zbl0907.60069
  6. [6] Guttmann A. and Bursill R., Critical exponent for the loop-erased self-avoiding walk by Monte Carlo methods. J. Stat. Phys. 59 ( 1990) 1-9. 
  7. [7] Kenyon R., The asymptotic distribution of the discrete Laplacian ( 1998) preprint. 
  8. [8] Kesten H., Hitting probabilities of random walks on ℤd. Stoc. Proc. Appl. 25 ( 1987) 165-184. Zbl0626.60067MR915132
  9. [9] Lawler G., Intersections of Random Walks. Birkhäuser-Boston ( 1991). Zbl0925.60078MR1117680
  10. [10] Lawler G., A discrete analogue of a theorem of Makarov. Comb. Prob. Computing 2 ( 1993) 181-199. Zbl0799.60062MR1249129
  11. [11] Lawler G., The logarithmic correction for loop-erased walk in four dimensions, Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay 1993), special issue of J. Fourier Anal. Appl. ( 1995) 347-362. Zbl0889.60075MR1364896
  12. [12] Lawler G., Cut points for simple random walk. Electron. J. Prob. 1 ( 1996) 13. Zbl0888.60059MR1423466
  13. [13] Lawler G., Loop-erased random walk, preprint, to appear in volume in honor of Harry Kesten ( 1998). Zbl0947.60055MR1703133
  14. [14] Lawler G. and Puckette E., The intersection exponent for simple random walk ( 1998) preprint. Zbl0974.60088MR1810151
  15. [15] Madras N. and Slade G., The Self-Avoiding Walk. Birkhäuser-Boston ( 1993). Zbl0780.60103MR1197356
  16. [16] Majumdar S.N., Exact fractal dimension of the loop-erased self-avoiding random walk in two dimensions, Phys. Rev. Lett. 68 ( 1992) 2329-2331. 
  17. [17] Pemantle R., Choosing a spanning tree for the integer lattice uniformly. Ann. Prob. 19 ( 1991) 1559-1574. Zbl0758.60010MR1127715
  18. [18] Propp J. and Wilson D., How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph. J. Algorithms (to appear). Zbl0919.68092MR1622393
  19. [19] Pommerenke C., Boundary Behaviour of Conformal Maps, Springer-Verlag ( 1992). Zbl0762.30001MR1217706
  20. [20] Werner W., Beurling's projection theorem via one-dimensional Brownian motion. Math. Proc. Cambridge Phil. Soc. 119 ( 1996) 729-738. Zbl0854.60083MR1362952

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.