A lower bound on the growth exponent for loop-erased random walk in two dimensions
ESAIM: Probability and Statistics (1999)
- Volume: 3, page 1-21
- ISSN: 1292-8100
Access Full Article
topHow to cite
topLawler, Gregory F.. "A lower bound on the growth exponent for loop-erased random walk in two dimensions." ESAIM: Probability and Statistics 3 (1999): 1-21. <http://eudml.org/doc/104255>.
@article{Lawler1999,
author = {Lawler, Gregory F.},
journal = {ESAIM: Probability and Statistics},
keywords = {Beurling projection theorem; loop-erased walk},
language = {eng},
pages = {1-21},
publisher = {EDP Sciences},
title = {A lower bound on the growth exponent for loop-erased random walk in two dimensions},
url = {http://eudml.org/doc/104255},
volume = {3},
year = {1999},
}
TY - JOUR
AU - Lawler, Gregory F.
TI - A lower bound on the growth exponent for loop-erased random walk in two dimensions
JO - ESAIM: Probability and Statistics
PY - 1999
PB - EDP Sciences
VL - 3
SP - 1
EP - 21
LA - eng
KW - Beurling projection theorem; loop-erased walk
UR - http://eudml.org/doc/104255
ER -
References
top- [1] Ahlfors L., Conformal Invariance. Topics in Geometric Function Theory. McGraw-Hill ( 1973). Zbl0272.30012MR357743
- [2] Billingsley P., Probability and Measure. 2nd ed., John Wiley ( 1986). Zbl0649.60001MR830424
- [3] Burdzy K. and Lawler G., Rigorous exponent inequalities for random walks. J. Phys. A. 2 3 ( 1990) L23-L28. Zbl0716.60080MR1034620
- [4] Duplantier B., Loop-erased self-avoiding walks in 2D. Physica A 191 ( 1992) 516-522.
- [5] Fargason C., The percolation dimension of Brownian motion in three dimensions. Ph.D. dissertation, Duke University ( 1998). Zbl0907.60069
- [6] Guttmann A. and Bursill R., Critical exponent for the loop-erased self-avoiding walk by Monte Carlo methods. J. Stat. Phys. 59 ( 1990) 1-9.
- [7] Kenyon R., The asymptotic distribution of the discrete Laplacian ( 1998) preprint.
- [8] Kesten H., Hitting probabilities of random walks on ℤd. Stoc. Proc. Appl. 25 ( 1987) 165-184. Zbl0626.60067MR915132
- [9] Lawler G., Intersections of Random Walks. Birkhäuser-Boston ( 1991). Zbl0925.60078MR1117680
- [10] Lawler G., A discrete analogue of a theorem of Makarov. Comb. Prob. Computing 2 ( 1993) 181-199. Zbl0799.60062MR1249129
- [11] Lawler G., The logarithmic correction for loop-erased walk in four dimensions, Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay 1993), special issue of J. Fourier Anal. Appl. ( 1995) 347-362. Zbl0889.60075MR1364896
- [12] Lawler G., Cut points for simple random walk. Electron. J. Prob. 1 ( 1996) 13. Zbl0888.60059MR1423466
- [13] Lawler G., Loop-erased random walk, preprint, to appear in volume in honor of Harry Kesten ( 1998). Zbl0947.60055MR1703133
- [14] Lawler G. and Puckette E., The intersection exponent for simple random walk ( 1998) preprint. Zbl0974.60088MR1810151
- [15] Madras N. and Slade G., The Self-Avoiding Walk. Birkhäuser-Boston ( 1993). Zbl0780.60103MR1197356
- [16] Majumdar S.N., Exact fractal dimension of the loop-erased self-avoiding random walk in two dimensions, Phys. Rev. Lett. 68 ( 1992) 2329-2331.
- [17] Pemantle R., Choosing a spanning tree for the integer lattice uniformly. Ann. Prob. 19 ( 1991) 1559-1574. Zbl0758.60010MR1127715
- [18] Propp J. and Wilson D., How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph. J. Algorithms (to appear). Zbl0919.68092MR1622393
- [19] Pommerenke C., Boundary Behaviour of Conformal Maps, Springer-Verlag ( 1992). Zbl0762.30001MR1217706
- [20] Werner W., Beurling's projection theorem via one-dimensional Brownian motion. Math. Proc. Cambridge Phil. Soc. 119 ( 1996) 729-738. Zbl0854.60083MR1362952
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.