Efficient estimation of functionals of the spectral density of stationary gaussian fields

Carenne Ludeña

ESAIM: Probability and Statistics (1999)

  • Volume: 3, page 23-47
  • ISSN: 1292-8100

How to cite

top

Ludeña, Carenne. "Efficient estimation of functionals of the spectral density of stationary gaussian fields." ESAIM: Probability and Statistics 3 (1999): 23-47. <http://eudml.org/doc/104256>.

@article{Ludeña1999,
author = {Ludeña, Carenne},
journal = {ESAIM: Probability and Statistics},
keywords = {lower bounds; spectral density; Gaussian fields; linear functionals},
language = {eng},
pages = {23-47},
publisher = {EDP Sciences},
title = {Efficient estimation of functionals of the spectral density of stationary gaussian fields},
url = {http://eudml.org/doc/104256},
volume = {3},
year = {1999},
}

TY - JOUR
AU - Ludeña, Carenne
TI - Efficient estimation of functionals of the spectral density of stationary gaussian fields
JO - ESAIM: Probability and Statistics
PY - 1999
PB - EDP Sciences
VL - 3
SP - 23
EP - 47
LA - eng
KW - lower bounds; spectral density; Gaussian fields; linear functionals
UR - http://eudml.org/doc/104256
ER -

References

top
  1. [1] F. Avram, On bilinear forms in Gaussian random variables and Toeplitz matrices. Prob. Th. Rel. Fields 79 ( 1988) 37-45. Zbl0648.60043MR952991
  2. [2] R. Azencott and D. Dacunha-Castelle, Series of Irregular Observations. Forecasting and Model Building, Masson Éditions, Paris ( 1984). Zbl0593.62088MR746133
  3. [3] L. Birgé and P. Massart, Estimation of integral functionals of a density. Ann. Statist. 23 ( 1995) 11-29. Zbl0848.62022MR1331653
  4. [4] M. Bouaziz, Inégalités de trace pour des matrices de Toeplitz et applications à des vraisemblances gaussiennes. Probability Math. Statistics 13 ( 1992) 253-267. Zbl0781.60019MR1239151
  5. [5] R. Dahlhaus, Spectral analysis with tapered data. J. Time Ser. Anal. 4 ( 1983) 163-175. Zbl0552.62068MR732895
  6. [6] R. Dahlhaus, Parameter estimation of stationary processes with spectra containing strong peaks. Robust and nonlinear time series analysis. J. Franke, W. Härdie and D. Martin Eds. Lecture Notes in Statistics 26, Springer Verlag ( 1983). Zbl0571.62085MR786303
  7. [7] R. Dahlhaus, Efficient parameter estimation for self similar processes. Ann. Statist. 17 ( 1989) 1749-1766. Zbl0703.62091MR1026311
  8. [8] R. Dahlhaus and H. Künsch, Edge effects and efficient parameter estimation for stationary random fields. Biometrika 74 ( 1987) 877-882. Zbl0633.62094MR919857
  9. [9] R. Davies, Asymptotic inference in stationary Gaussian time series. Adv. Appl. Prob. 5 ( 1973) 469-497. Zbl0276.62078MR341699
  10. [10] D. Donoho and R. Liu, Geometrizing rates of convergence II. Ann. Statist. 19 ( 1991) 633-667. Zbl0754.62028MR1105839
  11. [11] P. Doukhan, J. Léon and P. Soulier, Central and non-central limit theorems for quadratic forms of a strongly dependent stationary Gaussian field. Rebrape 10 ( 1996) 205-223. Zbl0881.60023MR1475443
  12. [12] S. Yu. Efroimovich, Local asymptotic normality for dependent observations. Translated front Problemy Pederachi Informatsii 14 ( 1978) 73-84. MR533451
  13. [13] X. Guyon, Parameter estimation for a stationary process on a d dimensional lattice. Biometrika 69 ( 1982) 95-105. Zbl0485.62107MR655674
  14. [14] J. Hajek, Local asymptotic minimax and admissibility in estimation. Sixth Berkeley Symposium ( 1972) 175-194. Zbl0281.62010MR400513
  15. [15] R.Z. Khas'minskii and I.A. Ibragimov, Asymptotically efficient nonparametric estimation of functionals of a spectral density function. Prob. Th. Rel. Fields 73 ( 1986) 447-461. Zbl0595.62037MR859842
  16. [16] Yu.A. Koshevnik and B.Ya. Levit, On a nonparametric analogue of the information matrix. Theor. Prob. Appl. 21 ( 1976) 738-759. Zbl0388.62037
  17. [17] L. Le Cam, On the assumptions used to prove the asymptotic normality of maximum likelihood estimates. Ann. Math. Statist. 41 ( 1970) 802-828. Zbl0246.62039MR267676
  18. [18] L. Le Cam and G. Lo Yang, Asymptotics in StatisticsSpringer Series in Statistics ( 1990). Zbl0719.62003
  19. 19] B. Levit, Infinite dimensional information lower bounds. Theor. Prob. Appl. 23 ( 1978) 388-394. Zbl0404.62053MR488446
  20. [20] C. Ludeña, Estimación eficiente de funcionales de la densidad espectral de procesos gaussianos multiparamétricos. Proceedings IV CLAPEM 4 ( 1990) 140-153. 
  21. [21] C. Ludeña, Estimation des fonctionnelles de la densité spectrale des processus gaussiens dans différents cadres de dépendance. Thèse (Docteur en Sciences), Université de Paris Sud, Centre d'Orsay, France ( 1996). 
  22. [22] P.W. Millar, Nonparametric applications of an infinite dimensional convolution theorem. Z. Wahrsch. verw. Gebiete 68 ( 1985) 545-556. Zbl0571.62031MR772198
  23. [23] Y.F. Yao, Méthodes bayésiennes en segmentation d'image et estimation par rabotage des modèles spatiaux. Thèse (Docteur en Sciences), Université de Paris Sud, Centre d'Orsay, France ( 1990). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.