Les P -values comme votes d’experts

Guy Morel

ESAIM: Probability and Statistics (2000)

  • Volume: 4, page 191-204
  • ISSN: 1292-8100

How to cite

top

Morel, Guy. "Les $P$-values comme votes d’experts." ESAIM: Probability and Statistics 4 (2000): 191-204. <http://eudml.org/doc/104261>.

@article{Morel2000,
author = {Morel, Guy},
journal = {ESAIM: Probability and Statistics},
keywords = {unilateral hypothesis; bilateral hypothesis},
language = {fre},
pages = {191-204},
publisher = {EDP Sciences},
title = {Les $P$-values comme votes d’experts},
url = {http://eudml.org/doc/104261},
volume = {4},
year = {2000},
}

TY - JOUR
AU - Morel, Guy
TI - Les $P$-values comme votes d’experts
JO - ESAIM: Probability and Statistics
PY - 2000
PB - EDP Sciences
VL - 4
SP - 191
EP - 204
LA - fre
KW - unilateral hypothesis; bilateral hypothesis
UR - http://eudml.org/doc/104261
ER -

References

top
  1. J.R. Barra, Notions fondamentales de statistique mathématique. Dunod, Paris ( 1971). Zbl0257.62004MR402992
  2. J.O. Berger, Statistical decision theory and Bayesian analysis, second edition. Springer-Verlag, New York ( 1985). Zbl0572.62008MR804611
  3. J.O. Berger et T. Sellke, Testing a point null hypothesis: The irreconcilability of p-values and evidence. J. Amer. Statist. Assoc. 82 ( 1987) 112-122. Zbl0612.62022MR883340
  4. R.J. Buehler, Fiducial inference, An appreciation, edited by R.A. Fisher. Springer-Verlag, New York, Lecture Notes in Statistics ( 1980) 109-118. MR578886
  5. G. Casella et R.L. Berger, Reconciling Bayesian and frequentist evidence in the one-sided testing problem. J. Amer. Statist. Assoc. 82 ( 1987) 106-111. Zbl0612.62021MR883339
  6. J.M. Dickey, Three multidimensional-integral identities with bayesian applications. Ann. Math. Statist. 39 ( 1968) 1615-1628. Zbl0169.50505MR234545
  7. R.A. Fisher, The fiducial argument in statistical inference. Annals of Eugenics 6 ( 1935) 391-398. JFM62.1345.02
  8. K.R. Gabriel, Simultaneous test procedures - some theory of multiple comparisons. Ann. Math. Statist. 40 ( 1969) 224-250. Zbl0198.23602MR240931
  9. H.M.J Hung, R.T. O'Neill, P. Bauer et K. Köhne, The behavior of the p-value when the alternative hypothesis is true. Biometrics 53 ( 1997) 11-22. Zbl0876.62015MR1450180
  10. J. T. Hwang, G. Casella, C. Robert, M. T. Wells et R.H. Farell, Estimation of accuracy in testing. Ann. Statist. 20 ( 1922) 490-509. Zbl0761.62022MR1150356
  11. S. Karlin, Decision theory for Pólya type distributions. Case of two actions, I, in Proc. Third Berkeley Symposium on Math. Statist. and Prob. Univ. of Calif. Press 1 ( 1955) 115-128. Zbl0073.14202MR84917
  12. A.H. Kroese, E.A. van der Meulen, K. Poortema et W. Schaafsma, Distributional inference. Statistica Neerlandica 49 ( 1995) 63-82. Zbl0845.62002MR1333179
  13. E.L. Lehmann, Testing stastical hypotheses, second edition. Wiley, New York ( 1986). Zbl0608.62020MR852406
  14. E.A. van der Meulen et W. Schaafsma, Assessing weights of evidence for discussing classical statistical hypotheses. Statistics & Decisions 11 ( 1993) 201-220. Zbl0804.62022MR1257857
  15. A. Monfort, Cours de statistiques mathématique. Économica, Paris ( 1982). 
  16. G. Morel, Expertises : procédures statistiques d'aide à la décision, Pré-publication. LAST-Université de Tours ( 1997) 182. 
  17. G. Morel, Probabiliser l'espace des décisions, Pub. Sém. 97 : Bru Huber Prum, Paris V ( 1998) 71-98. 
  18. C. Robert, L'analyse statistique bayésienne. Économia, Paris ( 1992). Zbl0827.62006
  19. D. Salomé, Statistical inference via fiducial methods, Ph. D. Thesis, Rijksuniversiteit Groningen ( 1998). 
  20. W. Schaafsma, J. Tolboom et B. van der Meulen, Discussing truth and falsity by computing a Q-value, in Statistical Data Analysis and Inference, edited by Y. Dodge. North-Holland, Amsterdam ( 1989) 85-100. Zbl0735.62002MR1089626
  21. H. Scheffé, The analysis of variance, sixième édition. Wiley, New York ( 1970). Zbl0998.62500MR116429
  22. M.J. Schervish, P-values: What they are and what they are not. Amer. Statist. 50 ( 1996) 203-206. MR1422069
  23. P. Thompson, Improving the admissibility screen: Evaluating test statistics on the basis of p-values rather than power. Comm. Statist. Theory Methods 25 ( 1996) 537-553. Zbl0875.62043MR1381057

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.