Sharp large deviations for gaussian quadratic forms with applications
Bernard Bercu; Fabrice Gamboa; Marc Lavielle
ESAIM: Probability and Statistics (2000)
- Volume: 4, page 1-24
- ISSN: 1292-8100
Access Full Article
topHow to cite
topBercu, Bernard, Gamboa, Fabrice, and Lavielle, Marc. "Sharp large deviations for gaussian quadratic forms with applications." ESAIM: Probability and Statistics 4 (2000): 1-24. <http://eudml.org/doc/104262>.
@article{Bercu2000,
author = {Bercu, Bernard, Gamboa, Fabrice, Lavielle, Marc},
journal = {ESAIM: Probability and Statistics},
keywords = {Gaussian processes; Toeplitz matrices},
language = {eng},
pages = {1-24},
publisher = {EDP Sciences},
title = {Sharp large deviations for gaussian quadratic forms with applications},
url = {http://eudml.org/doc/104262},
volume = {4},
year = {2000},
}
TY - JOUR
AU - Bercu, Bernard
AU - Gamboa, Fabrice
AU - Lavielle, Marc
TI - Sharp large deviations for gaussian quadratic forms with applications
JO - ESAIM: Probability and Statistics
PY - 2000
PB - EDP Sciences
VL - 4
SP - 1
EP - 24
LA - eng
KW - Gaussian processes; Toeplitz matrices
UR - http://eudml.org/doc/104262
ER -
References
top- [1] Azencott R. and Dacunha-Castelle D., Séries d'observations irrégulières. Masson ( 1984). Zbl0546.62060MR746133
- [2] Bahadur R. and Ranga Rao R., On deviations of the sample mean. Ann. Math. Statist. 31 ( 1960) 1015-1027. Zbl0101.12603MR117775
- [3] Barndoff-Nielsen O.E. and Cox D.R., Asymptotic techniques for uses in statistics. Chapman and Hall, Londres ( 1989). Zbl0672.62024MR1010226
- [4] Barone P., Gigli A. and Piccioni M., Optimal importance sampling for some quadratic forms of A.R.M.A. processes. IEEE Trans. Inform. Theory 41 ( 1995) 1834-1844. Zbl0845.62064MR1385583
- [5] Basor E., A localization theorem for Toeplitz determinants. Indiana Univ. Math. J. 28 ( 1979) 975-983. Zbl0396.47018MR551161
- [6] Basor E., Asymptotic formulas for Toeplitz and Wiener-Hopf operators. Integral Equations Operator Theory 5 ( 1982) 659-665. Zbl0519.47014MR697009
- [7] Bercu B., Gamboa F. and Rouault A., Large deviations for quadratic forms of stationary Gaussian processes. Stochastic Process. Appl. 71 ( 1997) 75-90. Zbl0941.60050MR1480640
- [8] Book S.A., Large deviation probabilities for weighted sums. Ann. Math. Statist. 43 ( 1972) 1221-1234. Zbl0243.60020MR331486
- [9] Bottcher A. and Silbermann. Analysis of Toeplitz operators. Springer, Berlin ( 1990). Zbl0732.47029MR1071374
- [10] Bouaziz M., Testing Gaussian sequences and asymptotic inversion of Toeplitz operators. Probab. Math. Statist. 14 ( 1993) 207-222. Zbl0819.62038MR1321761
- [11] Bryc W. and Dembo A., Large deviations for quadratic functionals of Gaussian processes. J. Theoret. Probab. 10 ( 1997) 307-332. Zbl0894.60026MR1455147
- [12] Bryc W. and Smolenski W., On large deviation principle for a quadratic functional of the autoregressive process. Statist. Probab. Lett. 17 ( 1993) 281-285. Zbl0786.60025MR1237769
- [13] Bucklew J.A., Large deviations techniques in decision, simulation, and estimation. Wiley ( 1990). MR1067716
- [14] Bucklew J. and Sadowsky J., A contribution to the theory of Chernoff bounds. IEEE Trans. Inform. Theory 39 ( 1993) 249-254. Zbl0765.60017MR1211504
- [15] Coursol J. and Dacunha-Castelle D., Sur la formule de Chernoff pour deux processus gaussiens stationnaires. C. R. Acad. Sci. Sér. I Math. 288 ( 1979) 769-770. Zbl0397.62056MR535808
- [16] Cramér H., Random variables and probability distributions. Cambridge University Press ( 1970). Zbl0184.40101MR254895JFM63.1080.01
- [17] Dacunha-Castelle D., Remarque sur l'étude asymptotique du rapport de vraisemblance de deux processus gaussiens. C. R. Acad. Sci. Sér. I Math. 288 ( 1979) 225-228. Zbl0397.62055MR525929
- [18] Dembo A. and Zeitouni O., Large deviations techniques and applications. Jones and Barblett Pub. Boston ( 1993). Zbl0793.60030MR1202429
- [19] Esseen C., Fourier analysis of distribution functions. Acta Math. 77 ( 1945) 1-25. Zbl0060.28705MR14626
- [20] Gamboa F. and Gassiat E., Sets of superresolution and the maximum entropy method on the mean. SIAM J. Math. Anal. 27 ( 1996) 1129-1152. Zbl0936.62005MR1393430
- [21] Gamboa F. and Gassiat E., Bayesian methods for ill posed problems. Ann. Statist. 25 ( 1997) 328-350. Zbl0871.62010MR1429928
- [22] Golinskii B. and Ibragimov I., On Szegös limit theorem. Math. USSR- Izv. 5 ( 1971) 421-444. Zbl0249.42012
- [23] Grenander V. and Szegö G., Toeplitz forms and their applications. University of California Press ( 1958). Zbl0080.09501MR94840
- [24] Guyon X., Random fields on a network/ modeling, statistics and applications. Springer ( 1995). Zbl0839.60003MR1344683
- [25] Hartwig R.E. and Fisher M.E., Asymptotic behavior of Toeplitz matrices and determinants. Arch. Rational Mech. Anal. 32 ( 1969) 190-225. Zbl0169.04403MR236593
- [26] Howland J., Trace class Hankel operators. Quart. J. Math. Oxford Ser. (2) 22 ( 1971) 147-159. Zbl0216.41903MR288630
- [27] Jensen J.L., Saddlepoint Approximations. Oxford Statist. Sci. Ser. 16 ( 1995).
- [28] Johansson K., On Szegös asymptotic formula for Toeplitz determinants and generalizations. Bull. Sci. Math. 112 ( 1988) 257-304. Zbl0661.30001MR975365
- [29] Lavielle M., Detection of changes in the spectrum of a multidimensional process. IEEE Trans. Signal Process. 42 ( 1993) 742-749. Zbl0825.93760
- [30] Lehmann E.L., Testing statistical hypotheses. John Wiley and Sons, New-York ( 1959). Zbl0089.14102MR107933
- [31] Rudin W., Real and complex analysis. McGraw Hill International Editions ( 1987). Zbl0925.00005MR924157
- [32] Taniguchi M., Higher order asymptotic theory for time series analysis. Springer, Berlin ( 1991). Zbl0729.62086MR1177599
- [33] Widom H., On the limit block Toeplitz determinants. Proc. Amer. Math. Soc. 50 ( 1975) 167-173. Zbl0312.47027MR370254
- [34] Widom H., Asymptotic behavior of block Toeplitz matrices and determinants IIAdv. Math. 21 ( 1976). Zbl0344.47016MR409512
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.